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ABSTRACT

A major portion of the work and time involved in completing an incomplete set 

of reductions using an E-completion procedure such as the one described by Knuth 

and Bendix \_KB10]  or its extension to associative-commutative equational theories 

as described by Peterson and Stickel [PS81] is spent calculating critical pairs and 

subsequently testing them for coherence. A pruning technique which removes from 

consideration those critical pairs that represent redundant or superfluous information, 

either before, during, or after their calculation, can therefore make a marked 

difference in the run time and efficiency of an E-completion procedure to which it is 

applied.

The exploitation of term symmetry is one such pruning technique. The 

calculation of redundant critical pairs can be avoided by detecting the term 

symmetries that can occur between the subterms of the left-hand side of the major 

reduction being used, and later between the unifiers of these subterms with the 

left-hand side of the minor reduction. After calculation, and even after reduction to 

normal form, the observation of term symmetries can lead to significant savings.

The results in this paper were achieved through the development and use of a 

flexible E-unification algorithm which is currently written to process pairs of terms 

which may contain any combination of Null-H, C (Commutative), AC 

(Associative-Commutative) and ACI (Associative-Commutative with Identity) 

operators. One characteristic of this E-unification algorithm that we have not 

observed in any other to date is the ability to process a pair of terms which have 

different ACI top-level operators. In addition, the algorithm is a modular design 

which is a variation of the Yelick model [Ye85], and is easily extended to process 

terms containing operators of additional equational theories by simply "plugging in" a 

unification module for the new theory.



www.manaraa.com

m

ACKNOWLEDGEMENTS

This work is dedicated to the memory of Woodrow Claxton, a good friend who 

encouraged my interest in mathematics.

I would like to thank Dr. Ralph W. Wilkerson for his assistance as my advisor. 

I would also like to thank the other members of my committee, Dr. Arlan R. 

DeKock, Dr. Billy E. Gillett, Dr. W. Van Stoecker, M. D., Dr. Selden Y. Trimble, 

and Dr. George W. Zobrist. Special thanks go to Dr. Gerald R. Peterson of 

McDonnell-Douglas Corporation in Saint Louis, Missouri, for suggesting the topic of 

this research.

I would like to thank the American Academy of Dermatology and the 

McDonnell-Douglas corporation for their financial support.

This research was done as part of a larger project. The other people involved in 

the project were Dr. Tim Baird, Barbara Smith, and Dr. Ralph Wilkerson. I thank 

them for their work on the software, and for their willingness to set aside their own 

work to talk with me.

I would like to thank my parents for their love and for their encouragement 

during those early college years.

And finally, I would like to thank my wife, Annctta, and my sons, Marcus and 

Brandon, for their love and encouragement during the latter college years. Without 

them, this work would not have been completed.



www.manaraa.com

IV

TABLE OF CONTENTS

Page

ABSTRACT .............................................................................................................  ii

ACKNOWI.EDGEMF.NTS ........................................................................................iii

LIST OF ILLUSTRATIONS ................................................................................. viii

LIST OF TABLES ..................................................................................................... x

I. INTRODUCTION ............................................................................. 1

A. STRUCTURE ............................................................................... 1

B. GOALS AND MOTIVATION ...........................................  2

II. DEFINITIONS AND NOTATION ................................................  3

A. TERMS .......................................................................................... 3

B. SUBSTITUTIONS .................   4

C. EQUATIONAL THEORIES ....................................................... 5

D. FIRST-ORDER LOGIC .............................................................  6

III. AN OVERVIEW OF UNIFICATION ............................................ 7

A. HERBRAND'S UNIFICATION PROCEDURE ......................  8

B. ROBINSON'S UNIFICATION ALGORITHM ........................  9

C. IMPROVEMENTS ON THE EFFICIENCY OF ROBINSON'S
ALGORITHM ...............................................................................14

1. PROLOG ...............................................................................14

2. The Paterson-Wegman Algorithm ..........................................16

3. The Martelli-Montanari Algorithm ....................................... 18

4. The Linear Nature of Unification ..............................  19

D. TERM MATCHING ......................................................................19

E. E-UNIFICATION .......................................................................... 20

1. Early work in E-unification ....................................................21



www.manaraa.com

V

2. Unitary, Finitary, and Infinitary Complete Sets of Unifiers 22

3. AC Unification..............................  24

a. The Diophantine Process ..............................................24

b. The Restricted Stickel AC Unification Algorithm . . . .       27

c. The Generalized Stickel Algorithm .............................30

d. The Christian-Lincoln AC Algorithm ........................ 33

e. An ACI Unification Algorithm ................................... 36

4. The Yelick Model of F-Unification ......................................37

5. Computational Complexities of E-unification ....................38

IV. A REVIEW OF COMPLETION PROCEDURES...........................39

A. COMPLETE SETS OF REDUCTIONS ....................................... 41

B. THE KNUTH-BENDIX COMPLETION PROCEDURE.........42

1. The Conditions for a Complete Set of Reductions ...............42

a. The Finite Termination P roperty ...................................42

b. The Church-Rosser P roperty..........................................43

c. The Lattice Condition.....................................................44

2. The Test for Completeness .....................................................46

3. The Completion Procedure .....................................................49

4. Failure-Resistance ..................................................................50

C. THE PETERSON-STICKEL E-COMPLETION PROCEDURE 52

1. E-Complete Sets of Reductions.................  53

2. E-compatibility ...................................................................... 54

3. The AC Completion Procedure .............................................. 55

D. THE JOUANNAUD-KIRCHNER EXTENSIONS ....................59

1. Confluence and Local Confluence Revisited ........................ 59

2. Coherence and Local Coherence ............................................ 60

3. C o n flu e n c e  a n d  C o h e re n c e  C ritica l P a irs 62



www.manaraa.com

4. Dynamic Extensions .............................................................. 62

V. IMPLEMENTATION NOTES ON E-UNIFICATION AND
E-COMPLETION..................................................................................63

A. E-UNIFICATION ..........................................................  63

B. THE E-COMPLETION PROCEDURE .......................................70

VI. TERM SYMMETRY ..........................................................................73

A. ALTERNATIVE PRUNING TECHNIQUES ............................73

B. THE DEFINITION OF TERM SYMMETRY.................  76

C. TERM SYMMETRY IN E-UNIFICATION AND IN
E-COMPLETION ..........................................................................78

1. Symmetric Reductions ...........................................................80

2. Symmetric Critical Pairs ........................................................ 81

3. Symmetric Unifiers .................................................................84

4. Symmetric Subterm s...............................................................87

D. TERM SYMMETRY ALGORITHMS .......................................90

1. A Term Symmetry Decision Algorithm ................................ 90

2. An Algorithm for Finding Asymmetric Subterms (Strict
D om ains)...............................  97

3. An Algorithm for Finding Asymmetric Unifiers ................... 99

VII. RESULTS ..........................................................................................102

A. HARDWARE AND SOFTWARE ISSUES ...............................102

B. WEIGHTING FUNCTION .......................................................103

C. TEST CASES ...............................................................................103

1. Abelian Group ...................................................................... 104

2. Commutative Ring with Identity............................................ 107

3. Group Homomorphism .......................................................109

4. Distributive Lattice with Identity ....................................... 112

D. OBSERVATIONS ........................................................................ 115

1. AC Test Results ....................................................................115

vi



www.manaraa.com

2. ACI test results ....................................................................115

VIII. CONCLUSIONS .................................................................................... 117

A. SUMMARY .................................................................................117

B. TOPICS FOR FUTURE RESEARCH ........................................118

REFERENCES .........................................................................................120

VITA .................................................................................. 123

Vll



www.manaraa.com

vrn

LIST OF ILLUSTRATIONS

Figure Page

1 Robinson's unification algorithm ........................................................... 11

2 An example of directed acyclic graph representation................................  17

3 The AC unifiers for the term pair of example 3.7.....................................  29

4 Stickel's AC unification algorithm for variable-only terms ....................  30

5 Stickel's generalized AC unification algorithm .......................................  33

6 Confluence and local confluence................................................................ 46

7 The Knuth-Bendix completion procedure ..............................................  51

8a The Peterson-Stickel AC completion procedure, part 1 of 3...................... 56

8b The Peterson-Stickel AC completion procedure, part 2 of 3...................... 57

8c The Peterson-Stickel AC completion procedure, part 3 of 3...................... 58

9 Confluence and local confluence modulo E............................................... 60

10 Coherence and Local coherence for E-completion....................................  61

11 The top level function of the recursive E-unification algorithm................  64

12 A recursive null-E unification algorithm.................................................... 65

13 Siekmann's C unification algorithm..........................................................  66

14a The AC I-unification algorithm implemented, part 1 of 2..........................  69

14b The AC I-unification algorithm implemented, part 2 of 2..........................  70

15a The E-completion procedure implemented, part 1 of 2.............................. 71

15b The E-completion procedure implemented, part 2 of 2.............................. 71

16 An algorithm to decide if two terms are symmetric..................................  92

17 Mappings between a pair of symmetric terms...........................................  96

18a Algorithm to calculate the asymmetric strict domain of a term, part 1 of
2..................................................................................................................  98

18b Algorithm to calculate the asymmetric strict domain of a term, part 2 of 
2..................................................................................................................................................... 99



www.manaraa.com

19

IX

An algorithm to calculate asymmetric complete sets of unifiers for 
E-completion............................................................................................  101



www.manaraa.com

X

LIST OF TABLES

Table Page

I THE BASIS SET FOR THE DIOPIIANTINE EQUATION OF
EXAMPLE 3.7............................................................    27

II BASIS SET PRESENTED BY CHRISTIAN AND LINCOLN.............  35

III THE MATRIX REPRESENTATION OF A BASIS...............................  35

IV THE REGIONS OF A BASIS MATRIX.................................................  35

V E-UNIFICATION COMPLEXITIES OF SOME COMMONLY USED
THEORIES.................................................................................................  38

VI STATISTICS FOR ABELIAN GROUP.................................................  106

VII STATISTICS FOR COMMUTATIVE RING WITH IDENTITY. . . 109

VIII STATISTICS FOR GROUP HOMOMORPHISM...............................  112

IX STATISTICS FOR DISTRIBUTIVE LATTICE WITH IDENTITY. 114



www.manaraa.com

1

I. INTRODUCTION

A. STRUCTURE

In chapter 2, the definitions and notation throughout the remainder of the paper 

are presented. Additional definitions are provided as needed to supplement this list.

Chapters 3 and 4 arc reviews of literature pertaining to unification and 

completion procedures, respectively. The history of unification is profiled beginning 

with Herbrand's work of the 1930's and continuing to the present. Included is a 

discussion of the extension of unification to E-unification, that is, the unification of 

terms containing operators that have properties described by a set of equations. 

Particular attention is given to the E-unification of terms containing 

associative-commutative (AC) or associative-commutative-with-identity (ACI) 

operators, which has become an area of high research interest with the advent of 

commercially available symbolic mathematics manipulators, such as MACSYMA, 

REDUCE, and MAPLE. The work performed by such products is done, in part, 

through the use of complete sets o f reductions, that is, sets of rules for simplifying 

terms of an algebraic system such that the equality of those terms can be quickly 

decided. Chapter 4 contains an overview of procedures that can generate complete 

sets of reductions for some classes of algebraic systems, from the early and rather 

restrictive procedure developed by Knuth and Bendix to the much more general 

procedure of Jouannaud and Kirchner.

Chapters 5, 6, and 7 describe the software that we implemented for this research 

project. Included are pseudo-code and descriptions of our E-unification algorithm, 

E-completion procedure and, in chapter 6, algorithms for the detection and 

exploitation of the property of term symmetry between syntactic structures such as 

terms and sets of substitutions. This portion of the paper represents original work,
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and proofs of correctness of the theory and of correctness and termination of the 

associated algorithms are presented. Chapter 7 describes the examples used to test 

the viability of applying the theory and the results of those tests.

Chapter 8 contains our conclusions and ideas for future research.

B. GOALS AND MOTIVATION

The Knuth-Bendix type of completion (or E-completion) procedure operates by 

calculating and processing all critical pairs of terms that can be formed from all pairs 

of reductions in the set to be completed. This combinatorial behavior is made even 

worse, because if one of the critical pairs cannot be simplified to an identity, then it is 

used to form a new reduction that is added to the set of reductions, and then the 

entire process begins again.

The goal of this research is to find some method to reduce the amount of 

processing needed to complete a set of reductions. Early work in this area by 

Lankford was later extended by Kapur, Musser, and Narendran. Their technique 

involves discarding those superpositions and unifiers, the building blocks of the critical 

pair, that are not in simplest form, with respect to the set of reductions. This has 

proven to yield significant savings in processing time. Our approach is based on the 

concept of term symmetry, a variable renaming isomorphism that can exist between 

terms, unifiers, and other syntactic structures. It is our goal to show that structures 

exhibiting term symmetry represent redundant information, and that these 

superfluous structures can be discarded without causing any adverse changes in the 

results of the E-completion procedure. This idea will be tested on several example 

cases, and the results will be presented and analyzed.



www.manaraa.com

3

II. DEFINITIONS AND NOTATION

A. TERMS

V is a countably infinite set of variables. The members of V are designated by 

the names w, v, w, jc, y , z, i/„ v„ w„ jc„ y it and z„ for 0 < /.

F is a finite set of functions, or operators. The members of F are designated by 

the names +, —, x , / , /  g, h , f ,  gt, and hit for 0 < i. The degree of an operator / i s  the 

number of operands that it requires, and is written as deg(/). The set C of constants 

is the subset of F containing exactly those operators that have a degree of 0. That is, 

C = { f \ f e F *  deg(/) = 0}. C is assumed to be non-empty, and its members are 

designated by the names 0, 1, a, b, c, d, e, at, bit c„ dit and <?,, for 0 < /.

The set of all terms constructed from members of V and F, written as T{ V,F), or 

simply T  if no ambiguity arises, is defined recursively as follows:

(1) Variables are terms.

(2) Constants are terms.

(3) I f /e  F, deg(/) = «, and /„ ..., t„ are terms, th e n // ,  ..., tn) is a term.

(4) Only those syntactic structures defined by (1) through (3) are terms.

Terms may be represented as trees. The domain of a term t, written as dom(f), is 

the set of node occurrences in the tree, designated by dotted sequences of integers, 

following the notation of Huet and Oppen [//O80X The empty sequence is 

designated as e. The domain is recursively defined as follows:

(1) (Vx e V) dom(jc) = {c}.

(2) (Vce Qdom(c) = {c}.

(3) (V/fr,, ..., O e T )  dom(/(r,........ O) = {«} U  {'V I 1 ^  « A^e dom(/,)}.
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The subterm of a term, f, at a position, or occurrence, / e dom(f), is written as 

t/L It follows that

(1) t/e = t, and

(2) J[t\, -  , 0 1  iJ  = tjj.

The strict domain of a term, f, written as sdom(f), is the set of all non-variable 

occurrences in t. That is, sdom(f) — {/ | dom(f) a t/i^V ). The set of all variables 

occurring in / is written as vars(/).

B. SUBSTITUTIONS

A set o f  substitutions is a set of ordered pairs, each of which has the form jc «— f, 

such that x  e V and t e T, and no variable occurs as the left-hand side of more than 

one pair. Sets of substitutions are designated by the names 6, 0, A, o, 0„ and 

for 0 < /. The left-variables of a set of substitutions, 6, written as lvars(0), is the set 

containing the left-hand side of each member of 0. The right-variables of 0, written 

as rvars(0), is the set of variables occurring in the right-hand side of any member of

0. Stated another way, lvars(0) = {x | jc <- / e 0} and

rvars(0) = {y \ x  +- t e 0 e vars(/)}.

A set of substitutions, 0, is applied to a term, t, written as 0(r), by 

simultaneously replacing each variable occurring in t, that also occurs in lvars(0), by 

the term paired with the variable in 0. This can be restated as follows:

(1) If / = jc and jc «- s e 0, then 6(t) — s.

(2) If / = x  and jc <— s£0, then 0(f) = t.

(3) If t = f t lf ..., fj, then 0(f) =7(0(0, ..., 0(0).

Two sets of substitutions, 0, and 02, are equivalent if (V jc e V) B^x) = 02(jc).
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The composition of the sets of substitutions, X and 0, written as X<>0, is a 

combination of the two sets such that

XoQ — {jc ♦- X(/) | jc«-fe0}U{>'*“ 5 i j ; *“ -s e ^ A >,̂ lvars(0)}.

The application of a composition, XoO, to a term, t, has the same effect as first 

applying 0 to r, then applying X to the result. That is, Xo6(t) = X(0(t)).

A  variable-only set o f substitutions is a set of substitutions, {jc <— / | t e V}.

C. EQUATIONAL THEORIES

Let E be a set of equations, or axioms. The equational theory presented by E , 

written as E“, is the finest congruence over T  that contains E. That is, E" is exactly 

the set of equations derivable from E  by a finite proof, using reflexivity, symmetry, 

transitivity, and replacement of equals. The congruence relation on terms is written 

as s = t, where s = t e E*. FE is the subset of F containing exactly those members of F 

described by E. For example, FAC is the subset of F for which E contains an 

associative and a commutative axiom.

Nested occurrences within a term, /, of an operator, / , for which E  contains an 

associativity axiom may be flattened, that is, /  may be treated as an operator of 

arbitrary degree, and the nested occurrences of the operator and its associated 

parentheses be removed. For example, f i x , fiy, z)) = fifix, y), z) = fix , y , z).
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D. FIRST-ORDER LOGIC

A predicate is a Function that has as its range the set {TRUE, FALSE). 

Predicates are designated by the names P, Q, R, Pit Q„ and Rit for 0 < /. The degree 

of a predicate, P, is written as deg(/>).

A literal is defined as follows:

(1) If P is a predicate and deg(P) = 0, then P is a literal.

(2) If P is a predicate, deg(P) = n, and r„ , /„ are terms, then P{tu ... , /„) is a

literal.

(3) If / is a literal, then its negation, —./, is also a literal, such that if / = TRUE,

then -•/=  FALSE, and if / = FALSE, then -n/= TRUE.

(4) Only those syntactic structures defined by (1) through (3) are literals.

A clause is a disjunction of literals. A proposition is a conjunction of clauses.



www.manaraa.com

7

III. AN OVERVIEW OF UNIFICATION

Unification is a pattern matching process which identifies a match between all 

elements of a set of terms only if they can be made equal by substituting values (that 

are also terms) for variables occurring in them.

More formally stated, the unification problem is that of searching for a set of 

term-for-variable substitutions, 6, that, when applied to a set of terms, 

.V -- (a*,, ..., $„}, reduces 5’ to a singleton; that is, 0(a,) = 0(s2) = ••• = 0(s„). If such a 

set 6 exists, it is called a unifier of S.

One of the areas in which unification has proven to be important is that of 

automated theorem proving. Early attempts to automate the theorem proving 

process were based upon the work of Herbrand; his proof method uses a form of 

unification on one class of propositions. However, in other cases, the process of 

unification is nothing more than an elaborate "generate-and-test" process, 

instantiating the variables of a proposition from progressively larger subsets of the 

Herbrand universe of the proposition. If the proposition is satisfiable, this process 

will eventually halt. However, if the proposition is not satisfiable, then the process 

will never terminate. Later efforts, based upon the work of Robinson, were much 

more successful due to the computationally effective unification algorithm that 

Robinson introduced.

Another area in which unification has shown itself to be a valuable tool is that 

of term rewriting systems (for example, symbolic mathematics packages such as 

MACSYMA and REDUCE). Term rewriting itself can be viewed as a very 

generalized form of unification, in which term-for-term substitutions are performed 

instead of term-for-variable substitutions. A good example of a biological term 

rewriting system is a human trigonometry student attempting a proof of an identity. 

The student begins with a pair of unlike terms and, through a series of term
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rewritings on part (or all) of either or both of the terms, tries to derive a pair of 

identical terms. Automated term rewriting systems have been applied to problems in 

logic programming, programming language interpreters, and operating systems.

More recently, unification and other automated theorem proving tools have 

been applied to diagnostic expert systems. These tools give a firm mathematical 

foundation to the sometimes shaky experiential nature common to many expert 

systems. Hybrid systems, combining the best features of both rule-based and 

logic-based approaches to expert systems, are being investigated and developed.

A. HERBRAND'S UNIFICATION PROCEDURE

Many people attribute the "discovery" of unification to J. A. Robinson 

C/to65]. However, the concept of unification predates Robinson's definition by at 

least thirty years.

In chapter 5 of his 1930 thesis at the University of Paris, Jacques Herbrand 

[//e30 ] discusses the provable satisfiability of first-order predicate calculus 

propositions (this chapter is the source of Herbrand's theorem on the the satisfiability 

of propositions). In his paper, he states that he knows of no uniform procedure that 

would render the satisfiability of arbitrary propositions decidable, but he goes on to 

write

"However, there is a class of propositions for which we have such a 
procedure, namely, the class of propositions such that the matrix of each is 
a disjunction of atomic propositions and of negations of atomic 
propositions."

Specifically, the procedure that Herbrand was writing about is one which can decide 

the satisfiability of a proposition which contains positive and negative occurrences of 

the same predicate symbol—that is, a proposition that includes a "sub-proposition" of 

the form

v -»P(tl9 ..., O,
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such that P is a predicate symbol and s„ ..., snf r„ ..., tn are terms. This procedure 

is a search for instantiation values for the terms in the sub-proposition that will make 

the two predicates identical, except for their sign. If the search is successful, the 

sub-proposition is satisfiable and, thus, the original proposition (which is a 

disjunction of literals) is also satisfiable. Herbrand describes how to perform this 

search, which is a unification procedure.

However, as Herbrand pointed out, his unification procedure applies only to 

that class of propositions that contains both positive and negative occurrences of the 

same predicate symbol. For all other propositions, he took a brute force approach. 

An iterative process is begun, and with each pass, the variables of the proposition are 

instantiated from an increasingly larger subset of the Herbrand universe of the 

proposition. The Herbrand universe of a proposition is the set of all ground 

(variable-free) terms which can be formed from the function and constant symbols 

that occur in the proposition (if no constants occur, an arbitrary one is introduced). 

If any function symbols (other than constants) occur in the proposition, the 

Herbrand universe will contain an infinite number of terms. If the proposition is 

satisfiable, Herbrand's procedure will terminate. If the proposition is unsatisfiable, 

Herbrand's procedure will never terminate.

B. ROBINSON'S UNIFICATION ALGORITHM

In 1965, Robinson published a landmark paper [/to65] in which he introduced 

resolution as the single inference rule needed to prove a set (conjunction) of clauses to 

be unsatisfiable, where each clause is a disjunction of literals. The resolution rule is 

very similar to modus ponens; in fact, modus ponens is an instance of resolution. 

Resolution infers a new clause called a resolvent from two other clauses in the 

following manner:
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C V P(slt ... , sn) 

clause 2: C  v -i P(tlt ..., /„) 

resolvent: 0{C v O )

where C  and C' are (possibly empty) disjunctions of positive and/or negative literals, 

P is a predicate symbol, and 6 is a unifier of P(slt ..., s„) and P(tx, ..., /„).

A proof system that is based on resolution is a refutational system; that is, 

proofs are performed by contradiction. To use such a system, the clause to be proven 

is negated—that is, assumed to be false—and added to a (possibly empty) set of 

supporting clauses (axioms). Clause pairs are resolved until all possible clause pairs 

have been resolved or a contradiction is encountered. A contradiction occurs when 

two clauses of the form P(slt ..., sj and —«/*(/„ ..., fj are resolved, producing the 

empty clause as a resolvent. Robinson proved that a resolution-based proof system 

will derive the empty clause if and only if the set of clauses being resolved embodies a 

contradiction.

Considering the combinatorial number of resolutions that can take place on a 

set of clauses in a resolution-based proof system, it is evident that unification is going 

to be called upon very frequently. Thus, it is important to make it as efficient as 

possible. Efficiency will be even more critical in E-unification (unification under an 

equational theory).

There can be an infinite number of different unifiers for a particular set of terms. 

However, Robinson proved that there is only one most general unifier for a set of 

terms, modulo variable renaming.

Definition 3.1: Let a and 0 be two unifiers of a set of terms S. If there exists a 

(possibly empty) set of substitutions, 2, such that 

6 =  Xoo,
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then a is more general than 6, written as 6 < o. The unifier o is called the most 

general unifier (mgu) of S  if 0 < o for all unifiers, 0, of S. That is, any unifier of a set 

of terms can be obtained through the composition of some set of substitutions with 

the mgu.

ROBINSON-UNIFY(S);
begin

<*o := 0; 
k :=  0;
Status : = LOOP; 
while (Status = LOOP) do begin 

if (<r*(S) is a singleton)
then Status := SUCCHSS; /*ak is the mgu */ 
else begin

D*: = disagreement set of <rA(S); 
sort D* so that all variables appear first;
V*: = first element of sorted D*;
U*: = second element of sorted D*;
if (V* is a variable and does not occur in U*) (1)
then begin

<x*+. :=  {V* U*}oct* (2)
k :=  k +  1; 

end
else Status := FAIL; 

end; 
end;
retum(Status, ok); 

end;

Figure 1. Robinson's unification algorithm

Figure 1 contains the pseudo-code for Robinson's unification algorithm. The 

algorithm attempts to unify a set of terms, S , returning either a unifier of the set, or 

failure if the set has no unifier. Subterms are unified iteratively in a left-to-right 

manner such that, unless failure has occurred, the set of substitutions, oki calculated 

in the A:0* iteration unifies some prefix of all terms in S. The set <rA(S) is the result of 

applying ok to each element of S. The disagreement set, Dk of ok{S) is the set 

consisting of the subterm of each term in <r*(S) at the leftmost position where not all 

of those subterms are identical; thus Dk represents the leftmost subterms that must
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still be unified. In statement (2) of the pseudo-code, new substitution pairs are added 

to the set of substitution pairs by way of composition, as defined in chapter 2.

Robinson proved in his paper that the above procedure always terminates, is 

correct, and returns a unifier of the set of terms if and only if the set will unify. He 

also proved that the unifier returned by the algorithm is the mgu of the set of terms.

Example 3.1: Unify the set S  = {/[a, jc, £(/*(y))), A z» s(z)> #M)} using Robinson's 

algorithm.

For k = 0:

*0= 0

<*o(S) = {/(«, sW »)), Az> &)> sM )}
A» =  {z, a}

For k = 1:

01 — {z «— a}

°\{S) = •*» *(%))). A a> £(«). sM ))

A  =  {*> £(«)}

For k = 2:

02 = {x *- g(a)}o{z <- a] =  {z <- a, x  «- g(a)} 

o2(S) = {/(a, g(a), g(h(y))), J{a, g(a), g(w))}

A =  {w, h(y)}

For k = 3:

cr3 = {w <- h{y)}o{z <- a, jr*-g(a)} = {z * -a, x  <-g(a), w h{y)}

o,(S) = {/(a, g(a), gih(y)))}

Thus, the mgu of S  is <r3 = {z <— a, jc «- g(a), w *- /i(y)}. Note the left-to-right manner 

in which the terms arc unified, as discussed earlier. It can also be observed that all of 

the terms in <t*(*S) are identical to the left of the elements of Dk.
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At the point in Robinson's algorithm when a new substitution pair is being 

calculated, a check is made to see if the variable to be replaced, Vkt occurs within the 

term which is to replace it, Uk. (See statement (1) in figure 1) If so, the algorithm 

halts immediately with failure. This operation is called the occurs check, and its 

presence is necessary to make Robinson's unification a sound procedure. The 

soundness of unification will be further explained in the discussion of PROLOG, 

below. The occurs check gives the algorithm a worst-case complexity which is 

exponential based on the size of the terms being unified. This exponential behavior 

can be illustrated by a simple example.

Example 3.2: Unify the set S  = {/(g(*0, *o)» *2, g(x2, -*2)), A xu g(xlt x y), jc3)}.

For k = 0:

<*0 = 0

<*o(S) = {/tet*0, *0), *2, g(x2, *2)), J[xlf g(xlt *,), x,)}

^0 {"̂1» *0)}
For k = 1:

= { * 1 <- g{x0, *„)}

<*i(S) = {J{g(x0, *0), *2, g(x2, *2)), A gix0, *0), g(g(x0, x0), g{x0, x0)), x3)}

A  =  {* 2 , *0). *0 ))}

For k = 2:

= { * 1 «- g(x0x 0), x2 4-  gig{xQ, x0), g(x0, x0))}.

= A g(x0, *0), g(g(x0, x0), g(x0f x0)), g(g(g(x„, x0), g(x0f x0)), g(g(x0, x0), g(x0, x0))))t 

Agfa, x0), g(g(x0, x0), g(xtt, x0)), x3)}

A  = {*3, ^ ( ^ ( ^ 0, XQ), g(x0, X0)), g(g(x0f x0), g(x0, X0)))}

For k = 3:

= {xx g(x0 x0), x2 ♦- gteCxo, *0), g(x0, *„)),

*3 «- g(g(g(x0, x0), gfo, *„)), gig{x0, x0), g(x0, x0)))} 

o3(S) = {Ag(x0, Jf0), g{gix0, ar0), g(x0, x0))» g{g{g(x0, x0), g(x0, x0)), g(g(x0, x0), g{x0, x M )
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Note that the mgu, a3, of the terms in S contains 21 occurrences of the variable x0 in 

the term that is to replace each variable jc„ for 1 < / < 3.

C. IMPROVEMENTS ON THE EFFICIENCY OF ROBINSON S ALGORITHM

Since unification is such an important and frequently used component of 

applications such as automated theorem provers and term rewriting systems, the 

exponential nature of Robinson's unification algorithm prompted a great deal of 

research into methods of improving its efficiency or replacing it with some other, 

faster unification algorithm. We now review some of these efforts.

1. PROLOG.

The statements of a program written in PROLOG (PROgramming in LOGic) 

are actually first-order predicate logic clauses. Specifically, they are Horn 

clauses—disjunctions of literals with, at most, one positive literal. The program itself 

is a collection of definite clauses—clauses with exactly one positive literal. Execution 

of a PROLOG program is a series of resolution steps, and begins by resolving a 

distinguished goal clause—a. clause with no positive literals—with one of the definite 

clauses. Each successful resolution produces a new goal clause which is then used as 

a parent clause along with one of the definite clauses in the next resolution step. 

Execution continues until a resolution yields a resolvent null clause (successful 

completion of the program), or the goal clause cannot be successfully be resolved 

with any definite clause (failure).

Early in its development, the designers of PROLOG realized that an exponential 

unification algorithm would render PROLOG useless for any sizable applications; 

unification is a basic operation in PROLOG that is generally invoked many times for 

each successful unification. A solution had to be found, and one was. The designers
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chose to completely omit the occurs check! The reason is that unification without 

occurs check is linear on the size of the smallest term being unified. However, the 

speedup comes with a price; without the occurs check, unification is an unsound 

procedure. That is, without the occurs check, it is possible to generate a unifier in 

which a particular variable appears on both sides of one substitution pair. This may 

cause PROLOG to go into an infinite loop or, even worse, to return p.nswers that are 

wrong.

Example 3.3: Consider the two-clause PROLOG program 

\t(Xf X +  1). 

lt(3, 2): —l t (T+l ,  Y).

The first clause of this program can be read as "X  is less than X +  1." The second 

clause can be read as "3 is less than 2 if Y + 1 is less than Y.~ Both of these are true 

statements. To begin program execution the goal clause 

? -  lt(3, 2).

is introduced. The goal clause can be read as "is 3 less than 2?" The execution of the 

program proceeds as follows:

(1) Unification is attempted between the goal clause and the first program 

clause—unification fails.

(2) Unification is attempted between the goal clause and the second program

clause—unification succeeds with a mgu {}.

(3) The resolvent goal clause "? -  lt(T + 1, Y)~, is produced, which can be read

as "is Y + 1 less than YV

(4) Unification is attempted between the new goal clause and the first program

clause.

It is in step (4) of the execution of the logic program that things begin to go awry. 

During the iteration for k = 1 in Robinson's algorithm, ct, = {X <- Y + 1}, and 

Z),= {y, K + l + 1}. Clearly, an occurs check on Dx reveals that the variable Y
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occurs in the term Y+  1 + 1, so the unification should halt with failure. However, 

since the unification algorithm being used is devoid of an occurs check, it will not fail, 

but will instead add the substitution Y <- Y + 1 + 1 to the partial unifier. What 

happens at this point depends on the particular implementation of PROLOG being 

used. Some versions, such as Micro-PROLOG for the IBM PC, will go into an 

infinite loop trying to replace all occurrences of the variable Y with the term 

Y + I + l .  Others, such as Quintus PROLOG running under the VMS operating 

system on a Micro-VAX II will just return the answer "YLS", which is obviously 

wrong.

Thus, PROLOG is a language with a message, and that message is "user 

beware!" It is left entirely to the programmer to avoid situations that would cause 

problems such as that cited above.

2. The Paterson-Wegman Algorithm.

Many of the successful attempts to improve or replace Robinson's unification 

algorithm have been aimed at modifying the data structures representing the terms to 

be unified. One such effort is the algorithm of Paterson and Wegman 

Their algorithm unifies a pair of terms with a space and time complexity which is 

linear based on the size of the terms to be unified.

In order to use the Paterson-Wegman algorithm, the terms to be unified must be 

expressed as a directed acyclic graph (dag) in which common subexpressions are 

represented by a single subgraph. Nodes labelled by an n-ary function name will 

have an outdegree of n (thus nodes labelled by constants name will have an outdegree 

of 0). Nodes labelled by a variable name will have an outdegree of 0. Nodes with an 

indegree of 0 are roots. Figure 2 depicts the dag representation for the pair of terms, 

./te(-*i), and J[x2, x3).
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Once the pair of terms has been transformed into a dag, the input to the 

Paterson-Wegman algorithm is a set consisting of the root nodes of the two terms. 

This set is actually an equivalence class, since for the two terms to be unifiable, the 

roots must be unifiable. The algorithm proceeds in a top-down manner through the 

dag, working only with one equivalence class of root nodes at a time. When the 

nodes in a root class have been processed, they are removed from the dag, along with 

the edges leading from them. This exposes new root nodes which are then divided 

into equivalence classes. When all nodes have been removed from the dag, the pair 

of terms has been unified. Because of the data representation used, no occurs check 

is needed; an occurs check situation will manifest itself as a cycle in the graph, and 

the algorithm will fail since the nodes in the cycle can never become a root node, and 

will never be processed and removed from the dag.
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3. The Martelli-Montanari Algorithm.

In 1982, Martelli and Montanari published a paper in which they outlined an 

"almost-linear" algorithm for the unification of a pair of terms [A/M82]. Like 

Paterson and Wegman, Martelli and Montanari approached the efficiency problem of 

unification by changing the data structure used to represent terms. A pair of terms, s 

and /, to be unified by the Martelli-Montanari algorithm are represented as a 

singleton set, S  = { 5  = /}, of simultaneous equations; unification is then reduced to the 

problem of solving this set of simultaneous equations. The set of equations expands 

and contracts according to the application of two transformations described by 

Martelli and Montanari:

(1) Let J[tlt ... , tn)=J[ul, ..., e S. Term reduction is the process of 

replacing this equation in S  by the equations tx — ulf ..., tn = un. If /  is a 

constant (i.e. if n — 0), simply delete the equation from S.

(2) Let x  = t e S, such that jc is a variable and / is a term. Replace all

occurrences of jc in all other equations of S by /.

Martelli and Montanari claim that their algorithm, when implemented with sets 

of variables represented as lists, has a complexity of O(«log «), where n is the number 

of distinct variables in the pair of terms. They also claim that, when implemented 

with sets of variables represented as trees and when using the UNION-FIND 

algorithm [\AH1A~\ to add and to access elements that the complexity drops to 

0(mG(m)), where G(m) is the inverse of Ackermann's function1 and m is the number 

of variable occurrences in the pair of terms. Thus, the Martelli-Montanari unification 

algorithm is indeed almost linear, and uses more "standard" data structures than that

‘Ackermann's function is defined by:
F(0)=1,
F(i) = 2F<-‘>.

Thus, F(0) = 1, F(l) = 2, F(2) = 4, F(3) = 16, F(4) = 65536, etc.



www.manaraa.com

19

found in the Paterson-Wegman algorithm. The reason that the Martelli-Montanari 

algorithm is mentioned here, even though its complexity is theoretically worse than 

that of the Paterson-Wegman algorithm, is that Martelli and Montanari claim that, 

when actually implemented, their algorithm usually outperforms that of Paterson and 

Wegman.

4. The Linear Nature of Unification.

It has been shown by Dwork, Kanellakis, and Mitchell C/)^84] that unification 

is an inherently linear process, that is, even when run in a parallel environment, the 

best results that can be achieved are log space and linear time complexities.

With a lower bound defined on the complexities of unification, and the existence 

of algorithms that arc at or near that complexity level, other methods have been 

investigated for increasing the speed of unification. These include the integration of 

unification algorithms into the microcode of computers [Ca85] and the design of a 

parallel unification integrated circuit chip [TZ?86].

D. TERM MATCHING

A useful subset of the unification problem is the term matching problem. The 

term matching problem for a pair of terms, s and r, is a search for a set of 

substitutions, 0, such that

0(s) = /,

that is, a set of substitutions which, when applied to just one of the terms being 

matched, transforms it into a term identical to the second term. Such a set 6 is called 

a match of s and t. A match is a unifier, but a unifier is not always a match. 'Perm 

matching, or rather, its extension to E-matching, is used extensively in term rewriting 

applications.
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E. E-UNIFICATION

Recall from the definition of unification in the introduction to this chapter that 

the elements of a set of terms unify only if they can be made equal by substituting 

values for variable occurrences in those terms. Equality has been interpreted up to 

this point as meaning identity. Now, however, the definition of unification will be 

broadened by extending the definition of term equality.

E-unification is the search for a set of substitutions, 0, which, when applied to 

each member of a set of terms, S  = {slt ... , s j, makes the elements of S provably 

equal under some equational theory, E, that is, 0(5  ̂= 0(s2) = ... = 0(sj.E E E
The set of axioms describing E  could be the empty set, in which case E-unification is 

exactly that performed by Robinson's unification algorithm; from this point, we shall 

call this null-E unification.

There are many situations in which the ability to operate under a non-empty 

equational theory is useful. For example, a software system designed to solve 

problems in symbolic mathematics needs to have the ability to recognize and process 

operators which exhibit the associativity, commutativity, identity, and/or idempotency 

properties. Resolution-based proof systems and term rewriting systems designed 

around a null-E unification algorithm can still be forced to deal with non-empty 

equational theories, but not without introducing new problems. The obvious way is 

to include the axioms describing the equational theory as part of the set of terms 

input to the system. However, such systems may already be taxed by the 

combinatorics of the pairwise processing of clauses or terms, and must now deal with 

an even larger set of clauses. In addition, this solution tends to make such system 

"wander"; that is, many trivial and unnecessary intermediate results may be generated 

(since the solution search space has increased in size). An even worse consequence is 

that certain axioms, such as the commutativity axiom, can cause systems to go into
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an infinite loop (more detail is given about these problems with respect to term 

rewriting systems in chapter 4).

An alternative solution is to build all or some of the axioms describing the 

equational theory into the unification algorithm rather than including them in the set 

of input axioms. The inclusion of an E-unification algorithm reduces the 

combinatorics overhead of processing input axioms, thereby resulting in a more 

focused search of the solution space of a problem. In addition the potential looping 

behavior associated with certain "troublesome" axioms of the equational theory is 

avoided. However, this solution, too, is not without its problems.

The major drawback of E-unification is that a different unification algorithm will 

be needed for each equational theory. This entails a change in program code 

whenever another equational theory is to be used. The use of a null-E unification 

algorithm merely requires a change to the set of input axioms in order to change 

equational theories. Some progress has been made in the creation of a "general" 

E-unification algorithm for certain classes of equational theories, but there is still no 

solution for the general case. Another problem is that there are some equational 

theories which can be described as axioms, but for which there exists no unification 

procedure (since E-unification is equivalent to the decision procedure for equivalence 

of terms under an equational theory).

1. Early work in E-unification.

One of the earliest researchers of E-unification was Plotkin [P/72]. He 

investigated many of the advantages and problems of developing unification 

algorithms for various equational theories. Most of his work deals with 

resolution-based proof systems. It was he who first showed that to guarantee the
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completeness of a resolution-based proof system using E-unification, the set, L, of 

unifiers calculated for a set of terms, S, must exhibit two properties:

(1) Correctness: All a e l  must unify S.

(2) Completeness: If 6 unifies 5, then there exists a a e Z and a X such that

6 = Xo a.

Plotkin also described an additional property that is desirable for efficiency reasons, 

but which is not necessary for the completeness of a resolution-based proof system:

(3) Minimality: If 6 and a are both members of E, then there is no X such that

6 = Xoa.

A set of unifiers for a pair of terms, s and /, that has the properties (1) and (2) 

described above is said to be a complete set o f  unifiers o f  s and t, written as csu(s, t).

If, in addition, the set of unifiers has property (3), it is called a minimal complete set o f  

unifiers, written as //csu(s, r).

2. Unitary, Finitary, and Infinitary Complete Sets of Unifiers.

Plotkin categorized equational theories for which unification is decidable into 

four classes, based upon the maximum cardinality of their minimal complete set of 

unifiers: unitary, finitary, infinitary, and nullary. A unitary theory is one for which 

the minimal complete sets of unifiers can contain no more than one member. The 

empty equational theory (that is, null-E) is in this category. Robinson proved that a 

set of null-E terms will have, at most, a single mgu, modulo variable renaming by 

composition.

A finitary equational theory is one for which a minimal complete set of unifiers 

may contain more than one , but a finite number of maximally general unifiers, that 

is, unifiers which are mutually most general. A commutative equational theory, 

whose operators are described by a set of axioms of the form
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Ax, y) =Ay, x),

is a finitary theory. The existence of multiple unifiers for a set of terms will increase 

the complexity of a solution search space.

Example 3.4: Let /  be an commutative (C) operator, and let 5  = A X, y , A  and 

t= A a, b, c) be terms. Then /ycsu(s, t) = {{x «- a, y  «- b, z <-c),

(x<- a, y< - c, 2 <- b), {x <-b, y  <-a, z <-c}, {x <-b, y  * - c, z +-a},

{x+~c, y * -a ,  z <- b}, {x <- c, y  <- b, z <- a}}.

An Infinitary equational theory is one that may have an infinite number of

maximally general unifiers. One such theory is an associative equational theory,

whose operators are described by a set of axioms of the form

AAx, y), A = A X, Ay, A)-

Infinitary equational theories re-introduce a problem that existed in Herbrand's 

unification, namely, the possible non-termination of the corresponding E-unification 

procedure. One can either calculate the complete set of unifiers (in which case the 

unification procedure may never halt) or calculate a finite, but incomplete set of 

unifiers. Neither of these choices is an attractive one.

Example 3.5: Let f  be an associative (A) operator, and let s = A a, x ) and t = A X, <*), 

be terms. Then //csu(s, /) is the infinite set {{x<-a}, {x <~Aa, a)}»

a, a)}, ... }.

The class of nullary equational theories is the strangest of the four types. A set 

of terms under a nullary theory may have a unifier, but a minimal complete set of 

unifiers for the terms will never exist! This is true because if a set of terms, 

S  = {s„ ..., s j, will unify under a nullary theory, there may be an infinite chain of 

unifiers,

ax <L a2 <, <7, ^  ...&,
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such that each <r1+1 is more general than <t„ for 1 < /. Plotkin wrote this about T, his

notation for a minimal complete set of unifiers:

"We also know of no example of a theory T ... for which there is no such 
r , although we expect that one exists."

Manfred Schmidt-Schauss [SS86] did, however, find an example of a first-order 

equational theory which he proves to be of type nullary. It is an equational theory 

whose operators have the properties of associativity and idempotency, that is, an Aid 

theory:

J[/[x, y), z) =70 , J[y, z)) and (associativity)

J{xy j c )  =  j c . (idempotency)

3. AC Unification.

One class of E-unification algorithms that has received much attention over the 

past few years is that class designed to unify terms using equational theories 

consisting of axioms of associativity and commutativity for a set of operators. This is 

due mainly to the application of resolution-based automated theorem provers to 

mathematical problems, and also to the commercialization of several 

tcrm-rcwriting-bascd symbolic mathematics packages (such as MACSYMA and 

REDUCE). Some of the most commonly required unification algorithms are for 

associative-commutative (AC), associative-commutative with identity (ACI), and 

associative-commutative with idempotency (ACId) theories. The topic of this section 

will be that of AC unification.

a. The Diophantine Process.

All AC unification algorithms that have been developed to date exploit one 

common factor: A pair of terms involving only one AC operator and any number of 

variables can be associated with a linear diophantine equation, and the non-negative
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integral solutions to that equation correspond to the unifiers of the terms. In order 

to gain an understanding of AC unification, which is also the foundation for ACI and 

AC Id unification, we shall explore this relationship more closely.

An AC term which consists of one operator and any number of variables is said 

to be a variable-only AC term. In order to make the connection between the pair of 

variable-only AC terms and the diophantine equation more apparent, it will also be 

required that the terms be flattened. A flattened AC term is one in which all nested 

levels of associativity have been removed, treating the AC operator as one with an 

arbitrary number of operands.

Example 3.6: Let /  be an AC operator. Then

= A A “> /> , w)), A x , AAy> x ), v)»

is a variable-only AC term, and 

•s' = /0 ,  v, w, x, y, x, v) 

is the flattened form of s.

The following example illustrates the transformation of a pair of flattened, 

variable-only terms into its corresponding diophantine equation, by example.

Example 3.7: Let / b e  an AC operator and let s = Ay, x , x , y, x) and t —A u* v» v) be 

a pair of flattened, variable-only AC terms. The diophantine equation corresponding 

to the unordered pair of terms, <5, / > , is 

3x 4- 2y = u + 2v.

It can be observed that each of the AC terms maps to one side of the diophantine 

equation. Each side of the equation is a sum of products, where each product is 

composed of a distinct variable from the term associated with the side and a 

coefficient that is equal to the multiplicity of that variable in the term.
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A solution to the diophantine equation is a set of number-for-variable 

substitutions that makes the two sides of the equation equivalent. In a like manner, a 

unifier of the pair of AC terms is a set of term-for-variable substitutions that make 

the two terms provably equal. It can be shown that there is a correspondence 

between the non-negative integral solutions of a diophantine equation and its 

associated pair of flattened, variable-only AC terms. The solutions sought must be 

non-negative and integral because each variable in the AC terms can only be replaced 

by a non-negative and integral number of term occurrences. That is, one cannot 

replace a variable by negative or a fractional number of term occurrences.

There are an infinite number of non-negative integral solutions to a diophantine 

equation. However, each of these solutions can be represented as a sum of members 

of a finite basis set of solutions to the equation. A basis set can be algorithmically 

constructed by generating solutions for the equation in ascending value order. As 

each solution is generated, it is checked to see if it is equal to a sum of solutions 

already in the basis. If so, it is discarded; otherwise, it is added to the basis set. This 

generation process continues until some predetermined limit is reached for the value 

of the equation. The only requirement on the size of this limit is that it must be large 

enough that all solutions that are part of the basis are generated before it is reached. 

However, it is desirable to make the limit as low as possible, so that the basis 

generation process runs as quickly as possible. Several authors have described 

methods to calculate this limit, including Huet [7/w78] and Lankford [L<?87]. 

Zhang [Z/i87] describes a method of basis generation which works more efficiently 

for a diophantine equation in which many coefficients have a value of 1.

Table I contains the basis set for the diophantine equation of example 3.7, 

above. The basis set was calculated using Huet's limiting factor. The column 

labelled "Introduced Variable" is for use in the discussion of Stickel's AC unification 

algorithm.
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Table I. THE BASIS SET FOR THE DIOPHANTINE EQUATION OF 

EXAMPLE 3.7.

Solution
Vector X y u V

Solution
Value

Introduced
Variable

bx 0 l 0 1 2 Z X

b, 0 l 2 0 2 Z 2
1 0 1 1 3 z2

K 1 0 3 0 3 z*
bs 2 0 0 3 6 z.s

b. The Restricted Stickel AC Unification Algorithm.

Very similar unification algorithms for terms containing AC operators have been 

developed by Stickel [Sr75], and by Livesey and Siekmann [LS76]. Because of 

their similarity, only the Stickel algorithm will be described in this paper, because it is 

the one used in the implementation developed for use in this research.

Stickel's restricted AC algorithm is one which unifies a pair of flattened, 

variable-only AC terms. It is designed around the diophantine equation solution 

process described above. Once the basis set of non-negative integral solutions has 

been determined for the diophantine equation associated with the pair of terms, each 

solution is associated with an introduced variable (that is, a variable not appearing in 

either of the AC terms being unified). This can be seen for the diophantine equation 

of example 3.7 in the last column of table I. As stated earlier, each non-negative 

integral solution to the equation can be expressed as a sum of members of the basis 

set. Thus, if the set is the basis from example 3.7, {bXt b2y b2, b4, b5], then each 

solution of the equation will be of the form 

zxbx 4" z2b2 T z2b2 *4 z4b4 4- z$b$,
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where each coefficient, z„ z2, z3, z4, and zs, is a non-negative integer. Then, any 

solution to the equation will have as solutions for its individual variables,

Jf = z3 + z4 + 2zs, 

y  = z, + 2j,

m = 2z2 + z3 + 3z4, and 

v = z, + z3 + 3z5.

These values are obtained by reading down the column for each variable in table I. 

This generalized form for a solution to the equation corresponds to a general unifier 

of the AC terms f ly , j c ,  j c , y , j c )  and flu , v, v):

z*> z s > z s )> 1* z2), u<r-J{z2r Z 2, Z 3, Z 4, Z 4, Z 4) ,  V z3, zs, zs, z5)}.

However, not all non-negative integral solutions correspond to a valid unifier. 

Solutions in which some combination of the introduced variables are set to zero 

correspond to AC unifiers in which those same variables have been replaced by the 

identity, or null, term. If this causes one of the original term variables, j c , y, u, or z, 

in the example, to be set to the identity term, then that set of substitutions is not a 

valid unifier of the AC terms, since identity is not one of the properties of the 

equational theory.

Thus, the generalized unifier form presented above is not sufficient. In addition, 

it must be combined with each member of the power set of {z, = 0, ..., zk — 0} and 

each combination must be examined in order to determine which correspond to valid 

unifiers and which do not. For the pair of terms in example 3.7, this means that 

there are 25 or 32 possible unifiers, of which 19 prove to be valid unifiers; these are 

listed in figure 3.

Pseudo-code for the E-unification algorithm developed by Stickel for 

variable-only AC terms is presented in figure 4. The symbol # in statement (5 )  

represents an identity term. In statements (1) and (2) the input terms are flattened. 

In statement (3) the operands common to both flattened terms are removed before
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the diophantine equation is generated. It is easy to see that this does not change the 

solutions to the problem, since this corresponds to subtracting an identical quantity 

from both sides of the diophantine equation. Common operands are removed to 

make the solution process more efficient; fewer products on each side of the 

diophantine equation means fewer solutions that need to be examined to calculate the 

basis set of solutions. In statement (4) of the pseudo-code, a call is made to a 

function that solves the diophantine equation for its basis set.

Stickel gives a proof of the correctness and completeness of his restricted AC 

unification algorithm by proving that the diophantine process is correct and complete, 

that is, that the set of solutions to the diophantine equation is exactly the set which 

can be produced from the basis set of solutions.
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AC-UNIFY-VO(Term,, Term,); 
begin

if Term,.root = Term2.root 
then begin

NewTerm,: = FLATTEN(Term,); (1)
NewTerm, : = FLATTEN(Term2); (2)
remove arguments common to NewTerm,and NewTerm2; (3)
Equation : = diophantine equation created from 

NewTerm, and NewTerm2;
Basis : = basis solution set for Equation; (4)
BaseUnifier := EmptySet; 
for i : = 1 to | Basis |

Unifier := Unifier + v,, BasisTerm,,
where v, is the itk leftmost variable in Equation, 
and BasisTerm, is the i,h column of Basis;

UnifierSet : = EmptySet;
for a e the power set of {z, *- <j>, ..., *- <f>] begin (5)

Unifier := <roBaseUnifier;
If (Unifier is valid)
then UnifierSet := UnifierSet + Unifier; 

end;
retum(UnifierSet);

end
else

/* Term, and Term2 have different AC operators and do not unify */ 
return( EmptySet);

end;

Notes:
FLATTEN( Term) returns the flattened form of Term.

f igure 4. Stickel's AC unification algorithm for variable-only terms

c. The Generalized Stickel Algorithm.

Stickel's variable-only AC unification algorithm is certainly interesting, but is of 

limited utility: Most AC terms in a real application will have an outer operator that 

is AC, but the arguments will be terms of different AC operators and/or non-AC 

operators. This is exactly the universe in which Stickel's generalized AC unification 

algorithm is designed to operate. It assumes, however, the existence of a finite and
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complete E-unification algorithm for each non-AC equational theory to be 

represented.

The core of the generalized algorithm is an idea called variable abstraction. 

Variable abstraction is the process of uniformly replacing each operand of a term by a 

new variable (one that does not appear in the term), and forming a set of 

substitutions, called an abstraction s e t , in which each pair consists of one of the new 

variables and the operand that it replaces in the original term.

Example 3.8: Let /  and g  be AC operators, and h be a null-E operator. The variable 

abstraction of the term s =ftg(w, a), b, h(x), y) is a new term,

s' = A xi> *2. *3, y),

and its abstraction set is

(*i <- g(w, a), x2 <- b, <- h(x)}.

The original term can be obtained by applying the abstraction set to the variable 

abstraction of the term. Thus, the variable abstraction is a generalization of the 

original term. The original term should be flattened before it is abstracted (that is, 

flattened with respect to the outer AC operator of the term). Thus, the variable 

abstractions of a pair of AC terms will be a pair of flattened, variable-only AC terms, 

which can then be unified using Stickel's restricted unification algorithm.

However, there is another step to complete the generalized AC unification 

algorithm. Each unifier of the two abstracted terms must then be unified with the 

abstraction set, for the latter represents a set of constraints on the values that the 

new variables may take on in each unifier. This means that in order for a unifier of 

the variable abstractions to lead to one or a set of unifiers of the original AC terms, 

the values assigned to each new variable in the abstraction set must unify with their 

respective assigned values in the unifiers. Each such set of substitutions that
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simultaneously unifies the pair of abstracted terms and the value pair for each new 

variable is thus a unifier of the original AC terms.

The pseudo-code for Stickel's generalized AC unification algorithm is presented 

in figure 5. In statements (1) and (2) the input terms are flattened, then abstracted. 

In statements (3) and (4), recursive calls are made to unify the two values assigned to 

a new variable, x\ note that <t(jc) will be the value assigned to x  in the unifier, ct, of 

the abstracted terms. The partially built unifier, 6, is passed into the next level of 

recursion so that it may be updated at that level, also. The parameter PartialUnifier 

is given an initial value equal to the identity unifier. The algorithm may return a 

sizable set of unifiers, especially if the unification of value pairs from the variable 

abstraction unifier and the abstraction set requires the recursive invocation of the 

algorithm, as is the case when the two values are terms of a common AC operator. 

Stickel only proved that the generalized algorithm terminates, is correct, and is 

complete for a subclass of general AC terms. However, the proof of these properties 

for the entire class of general AC terms has since been provided by Fages [Fa84].

Example 3.9: Let /  be an AC operator and h be a null-E operator. Further, let 

s = /( m, v, b) and t =J[h(x, a), y) be terms. The variable abstractions of these terms 

are

.s' =J[u, v, *,) and

^ = A *2, y \

and the abstraction set is

0 = {*, <- /i(jr, a), x2 «- b).

The unification of s' and f  yields a set, E, of 25 unifiers. When rectified with the 

values assigned to the new variables, x { and x2, in the abstraction set, one obtains a 

complete set of unifiers for j  and t:

{u<r-h{x, a), y+-/Lv, b)},

{v<-h(x, a), y+-/tu> *)}.
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AC-UNIFY(Termj, Term2, Partial Unifier); 
begin

NewTerm,: = ABSTRACT(FLATTEN(Term,»; (1)
NewTerm,: = ABSTRACT(FLATTEN(Term2)); (2)
AbstractSet : = the abstraction set from the previous two statements; 
AbstractUnifiers : = AC-UNIFY-VO(NewTerm,, NewTerm2); 
if AbstractUnifiers exist 
then begin

FinalUnifiers : = {PartialUnifier}; 
for a e AbstractUnifiers

for j c  *— / e  AbstractSet begin 
Unifiers := EmptySet; 
for 6 e FinalUnifiers

if (a(jc).root is AC) and (<r(/).root is AC)
then Unifers := Unifiers U AC-UNIFY(<j(jc), o(t), $) (3)
else Unifers := Unifiers U UNIFY(a(x), o(t), 6)\ (4)

FinalUnifiers : = Unifiers; 
end;

end
else

/* There are no unifiers of Term, and Term2 */
FinalUnifiers : = EmptySet; 

retum( FinalU nifiers); 
end;

Notes:
FLATTENf Term) returns the flattened form of Term. 
ABSTRACT {Term) returns a variable abstraction of Term. 
UNlFY(7erm,, Terrrij, Partial Unifier) is a recursive form of 

Robinson's unification algorithm.

Figure 5. Stickel's generalized AC unification algorithm

d. The Christian-Lincoln AC Algorithm.

Stickel's AC unification algorithm and its derivatives (for example, ACI 

unification) can be very inefficient: Many potential unifiers are generated and then 

thrown out because they violate the constraints of the problem. However, Christian 

and Lincoln have developed an algorithm for unifying linear pairs of AC terms
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[CX88]. A linear pair o f AC terms is a pair of terms in which each variable occurs 

only once. The algorithm is based upon Stickel's algorithm and reduces the run time, 

for this class of terms, by a factor of 3 to 4.

Christian and Lincoln observed that when a linear pair of AC terms is 

abstracted, the resulting pair will also be linear. They also observed that all 

coefficients in the diophantine equation corresponding to a linear pair of terms will 

have a value of 1. This means that the basis set of solutions for the equation will 

consist of only those solutions in which exactly one variable on each side of the 

solution has a value of 1, and all others have a value of 0. With such a regular 

pattern of solutions in the basis, we do not have to go through the costly process of 

solving the diophantine equation. Rather, a set of solutions matching this pattern 

can be quickly generated. Since there are exactly two variables in each solution of 

the basis that have non-zero values, the basis can be represented as a matrix. Table 

II shows the basis and the matrix for the diophantine equation,

Jft +  X , -I- *3 T  x4 + y 2 +  .y3 +  y 4,

as presented by Christian and Lincoln. Table III shows the matrix representation of 

the basis of table II. Before variable abstraction, each AC term to be unified is 

sorted in the following order: constants, terms, and then variables. The basis matrix 

can then be divided into nine regions, as shown in table IV. By performing some 

computationally simple analyses on the entries within each region, the valid unifiers 

can be generated from the matrix. For example, as seen in table IV, the introduced 

variables in the constant/constant region of the matrix must be set to 0, since a value 

of 1 would mean the unification of a constant with a different constant. (Remember, 

arguments common to both terms to be unified are removed before variable 

abstraction takes place.) A similar argument shows that the introduced variables in 

the constant/term and term/constant regions must also be set to 0.
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Table II. BASIS SET PRESENTED BY CHRISTIAN AND LINCOLN.

*1 *2 *3 *4 y \ y 2 y 3 y •
Introduced

Variable

0 0 0 1 0 0 0 i z,
0 0 0 1 0 0 1 0 *2
0 0 0 1 0 1 0 0 z3
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 ZS
0 0 1 0 0 0 1 0 Z 6
0 0 1 0 0 1 0 0 z7
0 0 1 0 1 0 0 0 Z*

0 1 0 0 0 0 0 1 z9
0 1 0 0 0 0 1 0 Zio
0 1 0 0 0 1 0 0 zn
0 1 0 0 1 0 0 0 Z l2
1 0 0 0 0 0 0 1 Z13
1 0 0 0 0 0 1 0 Zl4
1 0 0 0 0 1 0 0 Zis
1 0 0 0 1 0 0 0 Z|6

Table III. THE MATRIX REPRESENTATION OF A BASIS.

X i *2 *3 ^4
y i Z,.i zi a zu Zl,4
y 2 Z2.I z 2 a Z2.3 Z2.4
y * Z3.1 Z3̂ Z3̂4
y * Z4.1 z *j Z4rJ ZM

Table IV. THE REGIONS OF A BASIS MATRIX.

C T V
c 0 0 • • •
T 0 ... • • •
V ... ... ...
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e. An ACI Unification Algorithm.

The diophantine process, and thus the AC unification algorithms of Stickel, can 

be easily adapted to unify terms containing operators that exhibit the properties of 

associativity, commutativity, and identity (ACI). Recall that in the diophantine 

process associated with flattened, variable-only AC terms, the general form of a 

solution is the sum of some multiple (zero or more) of each of the solutions in the 

basis set,

zxbx +  z2b2 + ••• zkbk.

Also recall that the solution corresponding to each potential unifier of the AC terms 

is obtained by setting a subset of the coefficients, z,, ..., zk, in the general solution to 

a value of 0. Any of these solutions which would cause one of the equation variables 

to be assigned a value of 0 is discarded, since it would cause the same variable in the 

unifier of the terms to be assigned the identity term, or null term, which is not 

possible in an AC theory.

However, these troublesome solutions are no problem when dealing with an ACI 

equational theory. Since variables may be assigned an identity value and "disappear" 

from a term, the solutions discarded as invalid for an AC theory are valid for an ACI 

theory. The general solution to the diophantine equation, given above, corresponds 

to a unifier, <r0, of the pair of ACI terms. It can be seen that any solution obtained 

by setting to 0 some of the coefficients in the general solution corresponds to a unifier 

obtained by applying a subset of 

{z,«- e, ..., zk 4-  e)

to a0. This means that any unifier of the ACI terms can be obtained by composing 

some subset of the above set of substitutions with a0. Thus, <r0, the unifier 

corresponding to the general solution to the diophantine equation, is the single most 

general unifier of a pair of flattened, variable-only ACI terms.
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Stickel's restricted AC unification algorithm, presented in figure 4, can be 

transformed into a function ACI-lJNIFY-VO(7>rm,, Term2) which unifies a pair of 

variable-only ACI terms, Termx and Term2, by deleting the code of the final "for" loop 

and returning the value of the variable Base Unifier as the value of the function. 

Stickel's generalized AC unification algorithm, presented in figure 5, can be changed 

into a generalized ACI unification algorithm, ACI-UNIFY(7>/m„ Term2), by 

replacing the call to AC I-UNI FY( Termu Term2) with a call to 

ACl-UNIFY-VO(Term,, Term2).

4. The Yelick Model of E-Unification.

Given two equational theories, A and B, for which correct and complete 

li-unification algorithms are known, the problem of finding an E-unification 

algorithm for the combined equational theory, A U B, is not a trivial task. However, 

Yelick CYe85] has shown that for confined regular equational theories, a top-level 

program can be written to invoke the individual, finite, complete, recursive 

E-unification algorithms and return a complete and correct set of unifiers for terms 

containing operators from some or all of the involved equational theories.

A non-confining equation is one of the form j c  = /, where j t  is a variable and / is a 

non-variable term. An equational theory containing no non-confining equations is a 

confined theory. An example of a non-confining equation is one defining an identity 

element, e, for an operator, /:

f ix , e) = x.

An equational theory is regular if , for each equation, s = /, in the definition of the 

theory, vars(s) = vars(/).
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Yelick's model of unification is the basis for the E-unification algorithm used in 

this research. The pseudo-code for this implementation is given in chapter 5.

5. Computational Complexities of E-unification.

Kapur and Narendran CA7V86.1] gathered complexity statistics for quite a 

variety of unification algorithms. The complexities for unification corresponding to 

some commonly occurring equational theories appear in table V, along with the 

references in which the complexities first appeared.

Table V. E-UNIFICATION COMPLEXITIES OF SOME COMMONLY USED 

THEORIES.

Equational Theory Unification Complexity Reference

Null-E Linear
C NP-Complete > 7 9 ]
A Decidable Afa77]
AC NP-Complete A7V86.2]
ACI NP-Complete AT/V86.2]
ACId NP-Complete [ AfiV86.2]
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IV. A REVIEW OF COMPLETION PROCEDURES

It is common practice for human mathematicians to rewrite a mathematical 

term into another term to which it is equal. The simplification of an algebraic 

expression and the solution of a trigonometric identity are two examples in which 

terms are iteratively changed through a sequence of rewrites until a goal is reached 

(those goals being the achievement of a normal form for algebraic simplification and 

the discovery of identical terms for the solution of an identity). Whether implicitly or 

explicitly stated, rewriting is performed via a set of rewrite rules, or identities, each of 

which have the form tx = t2.

However, when term rewriting is automated and a finite set of identities is used 

as the set of rewrite rules, problems are encountered. One problem is that, if a term 

is rewritten using some rule in a left-to-right manner, that is, replacing a term 

matching the form of the left-hand side of the rule with one matching the right-hand 

side of the rule, the system may immediately rewrite the result back to the original 

term using the same rule in a right-to-left application. If this were to continue, the 

result would be an infinite sequence of rewrites oscillating between a pair of terms. 

Another problem arises because of the presence of a rule in which the left-hand side 

of the rule is a term contained as a proper subterm of the right-hand side (or vice 

versa). If such a rule is applied in a left-to-right manner, the resulting term is more 

complex than the original, but contains an instance of the original. The same rule 

could be applied repeatedly to each resultant term, leading to an infinite sequence of 

terms, each more complex than the one from which it was rewritten.

Example 4.1: Let s=J[f[a , a), e) be a term. Applying the rule describing 

associativity for /,

AA*, >0. z) =A*. A y, z)).
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iteratively to 5  in a left-to-right then right-to-left manner results in the looping, 

infinite sequence of rewritten terms,

A<*> J[a, *)), AA<*> a \  e), J[a, f a ,  e)), ....

Applying a rewrite rule describing an identity element, e, for f  

A x , e) = x,

repeatedly to 5  in a right-to-left manner results in an infinite sequence of rewritten 

terms,

ywo,«), <0, <?), yw/w«, a), <0, <0, <0, «)»<0, <0, <0, <0, -  •

These problems can be overcome, however, by transforming the set of identities 

used as rewrite rules into a set of reductions. A reduction is an ordered pair of terms 

of the form A -* p, such that A — p is an identity and A is, in some sense, simpler than 

p. A reduction can be used to rewrite a term, /, only if there exists a match between 

A and ///, that is, if there exists a set of substitutions, <7 , such that a(A.) is equal to the 

subterm of / at some position, /edom(/). The rewritten term is /[# <- <r(p)], the 

result of replacing subterm t/i with o(p). The relation specifies the rewriting of one 

term to another by a single application of a reduction, r, to the first term. Thus, 

/ -+ t' specifics that one application of r rewrites term / into term /'. In a like fashion, 

the relation -+ specifies the rewriting of one term to another by a single application of 

a reduction from a set of reductions, R. The transitive closures of -» and —► are the
'  R

relations -»+ and -*+, respectively. Likewise, their reflexive, transitive closures are ther R
relations —►* and —►*. A term which cannot be rewritten by any reduction in a set of

f  R

reductions R is said to be irreducible with respect to R. An irreducible form  or 

terminal form  of a term, /, with respect to R, written as /],*, is an irreducible term, t*, 

such that / -*Y.
R

Example 4.2: Let s  = A A a » a)* e)- Applying a reduction,

M .x, >), 2) fly , 2)),

formed from the first rule of example 4.1, to s  results in the term
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s' = A a ,  A ° ,  «)).

which is irreducible with respect to the reduction; so, the oscillation displayed in 

example 4.1 has disappeared. Applying a second reduction,

J[x, e) = e,

formed from the second rule of example 4.1, to s produces the term 

s" =A°y a)y

which is irreducible with respect to the second reduction; thus the second infinite 

sequence that was seen in example 4.1 has been eliminated.

A. COMPLETE SETS OF REDUCTIONS

The word problem is that of deciding whether or not two terms are provably 

equal with respect to some relation. In general, the word problem is undecidable 

However, the word problem can be easily solved with respect to a relation 

if there exists, for that relation, a finite complete set of reductions.

Definition 4.1: A set of reductions is a complete set o f  reductions if each term has 

exactly one irreducible term and no distinct irreducible terms are equivalent, with 

respect to the set of reductions.

The first restriction of this definition is actually a consequence of the second; 

since distinct irreducible terms are not equivalent, and all new terms produced by 

reducing a term are considered equivalent, there can be only one irreducible term 

produced.
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B. THE KNUTH-BENDIX COMPLETION PROCEDURE

In 1970, Knuth and Bendix published a pioneering paper in the study of complete sets 

of reductions \_KB10~\. In their paper, they investigated the conditions under which 

a set of reductions is complete and, as a consequence, derived an algorithm for testing 

the completeness of a set of reductions, and extended it to a procedure for completing 

an incomplete set of reductions (in many cases).

1. The Conditions for a Complete Set of Reductions.

In order to meet the conditions for completeness specified in definition 4.1, a set 

of reductions must exhibit the finite termination property and be a Church-Rosser set 

of rewrite rules, as explained below.

a. The Finite Termination Property.

A set of reductions, R, has the finite termination property if there exists no 

infinite chain of rewrites,

/ == /0 r, .
R R R

If R  has this property, then the process of rewriting a term to an irreducible term, 

with respect to R, is a finite process. Every term will rewrite to at least one 

irreducible term.

To guarantee the finite termination property for a set of reductions, a 

well-founded partial order on the set of all terms must be found. A well-founded 

partial order (wpo) is a partial order which has no infinitely descending chains. The 

wpo will be based upon a weighting function, which associates with each term a 

measure of its complexity. The value of the weighting function for a term, /, is 

designated as weight(r). The well-founded partial order, > , relative to the weighting 

function, is defined as follows for the set of all terms, T:
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(1) (Vs, t e  T) If weight(s) > weight(/), then s >  t.

(2) (Vs, t e  T) If weight(s) = weight(r), then s ^  /, that is, s and / are not related

by the wpo >-.

There are some restrictions that must be met by any weighting function chosen. 

For a weighting function to be applicable, the following conditions must hold:

(1) There must not be an infinite set of terms, {r„ t2, /3, ...}, such that 

weighty,) > weight^) > weight(r3) > — This insures that >■ is indeed a wpo.

(2) (Vs, t e T) If weight(s) > weight(/) and a is a set of substitutions, then 

weight(a(s)) >  weight(<r(/)), that is, term ordering must be preserved by 

substitution.

(3) (Vs, /„ t2 e T) If weight^) >  weight(/2), then it must be true that 

(Vi e dom(s)) weight(s[/ +- r,]) >  weight(s[/ <— r2]), that is, term ordering 

must be preserved by subterm replacement.

(4) (VA -> p e R) weight(^) > weight(p), that is, X >  p.

b. The Church-Rosser Property.

A finite set of reductions possessing the finite termination property alone is 

sufficient to solve the word problem, with respect to the set of reductions. Every 

term has a finite number of subterms, so there are only a finite number of ways to 

rewrite a given term by a single reduction application. Due to the finite termination 

property, every possible rewrite sequence is finite in length. Therefore, a complete 

rewrite tree can be developed for any given term. Branches of the tree correspond to 

rewriting sequences, and the leaves of the tree correspond to all irreducible terms that 

can be produced from the root term. It can be decided, then, whether or not two 

terms are equivalent, with respect to the set of reductions, by generating the rewrite 

tree for each of the terms and then searching the trees for a common irreducible term.
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However, if the branching factor or depth of the trees is very large, this will be a 

very expensive search process. This is the reason for adding the requirement of the 

Church-Rosser property to a set of reductions.

Definition 4.2: A set of rewrite rules is Church-Rosser if terms that are equivalent, 

with respect to the set of rules, have a common rewriting.

Note that the definition of the Church-Rosser property does not state that the 

common rewriting must be irreducible; thus, it could be that the common rewriting 

can be further rewritten several ways into several different terms. These terms, 

however, are equivalent and must, therefore, have a common rewriting. This 

fluctuating behavior could continue indefinitely if not for the finite termination 

property, which requires that each rewriting sequence halts. Because the set is 

Church-Rosser, there must exist a common irreducible term at which all rewriting 

sequences halt. Therefore, it can be seen that a Church-Rosser set of reductions 

possessing the finite termination property does indeed satisfy the definition of a 

complete set of reductions.

c. The Lattice Condition.

The finite termination property is assured by the selection of a term weighting 

function that produces a well-founded partial order on terms and meets the 

requirements specified earlier. But how is a set of reductions shown to be

Church-Rosser? The proof is based on the fact that a set of reductions is 

Church-Rosser if it has the finite termination property and is confluent.

Definition 4.3: A set of reductions, R , is confluent if, for all terms t, /„ and *2» where 

/ —►*/, and /-+*/,, there exists a term, such that /, —►V and t2—>Y, that is, if all
R R R R

rewritten forms of a given term have a common rewriting.
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Confluence is pictorially described in figure 6(a). Even though the finite 

termination property guarantees that a term has a finite rewrite tree, it can be difficult 

to prove that a set of reductions is confluent. Since t is rewritten into terms /, and t2 

using the relation -V, the set of terms which take on the roles of /, and t2 could be 

quite large, and the pairwise testing of these terms could be expensive.

Fortunately, it is not necessary to prove confluence in order to show a set of 

reductions to be Church-Rosser. It has also been shown that a set of reductions is 

confluent if it has the finite termination property and is locally confluent.

Definition 4.4: A set of reductions R is locally confluent if, for all terms r, /,, and /2, 

where / -► t. and t —*■ there exists a term, f , such that r. and t2 — that  is, if
R R R R

all terms derived from a given term by a single application of a reduction have a 

common rewriting.

Local confluence is diagrammed in figure 6(b). The proof that a set is locally 

confluent is easier than the proof that the set is confluent since, in general, the 

number of rewritten terms derivable from a term by a single reduction application will 

be fewer than the number of those derivable from the same term by any number of 

reduction applications.

The relationships between complete, Church-Rosser, confluent, and locally 

confluent sets of reductions are summarized in theorem 4.1.

Theorem 4.1: The following statements about a set R of reductions possessing the 

finite termination property are equivalent:

(1) R is a complete set of reductions.

(2) R is Church-Rosser and has the finite termination property.

(3) R is confluent and has the finite termination property.

(4) R is locally confluent and has the finite termination property.
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Thus, to show that a set of reductions, R , is a complete set of reductions, one 

needs only to show that R is a locally confluent set and possesses the finite 

termination property. Knuth and Bendix call the local confluence property the lattice 

condition. It is the lattice condition upon which the superposition process, that is, the 

Knuth-Bendix test for completeness, is based.

2. The Test for Completeness.

Testing whether or not local confluence holds for each term, with respect to a 

finite set of reductions possessing the finite termination property, constitutes a test 

for the local confluence of the set of reductions and, consequently, a test for the 

completeness of the set. However, it is not a viable test; although the rewrite tree 

associated with each term is finite, there are an infinite set of terms to be tested! In 

their paper, Knuth and Bendix described a procedure for deciding the local confluence 

of a set of reductions that avoids this problem. It is called the superposition process. 

and it needs only to test the finite set of left-hand terms of the reductions for local 

confluence. It will now be shown that proving local confluence by the superposition
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process is sufficient to prove local confluence for all terms, with respect to the set of 

reductions.

Let t be an arbitrary term to be tested for local confluence. Referring to figure 

6(b), local confluence will hold for / only if every pair of terms, tx and t2, produced by 

a single application to t of a reduction will conflate, that is, reduce to a common 

irreducible term. Let r, = Ax -* px and r2 = X2 -*• p2 be (possibly identical) members of 

the set of reductions, R, such that / —► /, and t -> tv This implies that there exist
rl r2

matches, ax and a2, and positions, /, j  e dom(f), such that t/i — ox(Ax) and t/j = cr2(22). 

One of three relationships must hold between subterms tji and t/j:

(1) t/i and t/j are disjoint subterms of /. In this case, tx and t2 trivially and

unconditionally conflate, since the two rewrites do not interfere with one

another in any way, that is, it will always be true that t -> tx~* t' and
r l  r2

t-*t> -*S.
r2 rl

(2) t/i and t/j overlap, but not completely. This case is impossible, which is

apparent from the tree structure of terms.

(3) t/i and t/j overlap completely, that is, t/i is a subterm of t/j, or vice versa.

This is the only one of the three cases which must be further investigated.

We shall assume, without loss of generality, that t/j is a subterm of t/i, that is, 

that there exists a position, k , such that j  = i.k. We shall also assume, without loss of 

generality, that rx and r2 are variable disjoint, implying that lvars(cr1) and lvars(<72) are 

also variable disjoint.

Since t/i = ax{Xj) and t/j = t/i.k = o2(X2), it follows that ox(Xx)/k = o2(X2). It can 

also be shown that there exists some position, k ' e dom(2,), such that

ox(Xx)/k = ox(Xxlk’).
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Because r, and r2 are variable disjoint (as are lvars(cr,) and lvars(<r2)), it will also 

be true that ox(XJk') = axoo2{XJk') and cr2(^2) = oxoo2(X2). Thus, 

G\oo2{XJk') = crx°o2(X2), which makes ox°o2 a unifier of XJk' and X2. Therefore, there 

must exist a most general unifier, 0, for XJk' and X2. The forms of the rewritten 

terms, and t2, are

*i = t\_i *- ox{px)~\ and

t2 = t\_i <- ox(Xx{_k' 4- <x2(p2)])].

Using the facts stated above, we can replace these by the equivalent forms, 

t\ = t\_i *- 0 \°o2{pJ~\ and 

t2 — if/ *— oxoo2{X^_k *— p2j|)]-

The mgu, 0, is more general than the unifier <7,°<j2, so we can replace the forms of /, 

and t2 once more by the forms 

r, = /[,'«- 0(p,)] and

It can be seen that these last forms of r, and t2 are identical, with the exception 

of the terms replacing subterm t/i. So the problem of deciding whether or not /, and 

t2 conflate is simplified to deciding whether or not t j i  and t2/i conflate. Thus, a term, 

/, is locally confluent if all pairs of terms,

< 0(Pi)» 9(Xx\_k' 4-  p2]) > ,

conflate, where A, -♦ p, and X2 -* p2 are reductions, k' e dom(A,), and 8(Xx/k') = d(X2).

Pairs of the form < 0(Pi)> 0 ( ^ i <— p2]) > are called critical pairs. (This 

terminology was not actually used by Knuth and Bendix, but was introduced later.) 

The process of forming and reducing all critical pairs is called the superposition 

process. Note that the same set of critical pairs is formed, regardless of the term 

being tested for local confluence. Thus, performing the superposition process for one 

term is equivalent to performing it for all terms. Therefore, the problem of testing an 

infinite number of terms is reduced to testing the finite set of left-hand sides of the



www.manaraa.com

49

reductions from the set of reductions. This constitutes a decision procedure for the 

completeness of a set of reductions.

3. The Completion Procedure.

Knuth and Bendix extended this completeness decision procedure to one for 

completing an incomplete set of reductions, as pictured in the pseudo-code of figure 

7. The input to the procedure is a set of equations, S, that is formed into the initial 

set of reductions, R. Note in statement (1) that only the members of the strict 

domain (sdom) of Xx are unified with X2, rather than the entire domain (dom) of Xx. 

This is because those critical pairs formed from the variable subterms of Xx trivially 

conflate.

The critical pairs generated from the set of reductions are iteratively produced. 

As each critical pair is calculated, its two component terms are reduced to irreducible 

forms, /, and /2, using R. (Sec statements (2) and (3) in the pseudo-code.) If /, = /2, 

then the critical pair has conflated, and the next critical pair is calculated and 

processed. If all critical pairs conflate, then the set R is a complete set of reductions, 

and a success status is returned along with R.

If, however, tx #  r2, then the pair of irreducible terms needs to be added as a 

reduction to R to make it "more complete." If weighty,) = weight(r2), then r, and t2 are 

not related by the well-founded partial order on terms, >-; thus, the pair cannot be 

ordered into a reduction, and the procedure must return a failure status. But, if 

weighty,) > weight(r2) or weighty,) < weight(/2), then the reduction tx —► t2 or t2 —> tx, 

respectively, is added to R. After the new reduction is added, inter-reduction 

simplification takes place, in which the two terms comprising each reduction in R are 

reduced to irreducible form, with respect to the other reductions in the set. If a 

reduction is reduced to a pair of identical terms, it is dropped from R. Finally, after
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inter-reduction simplification has been completed, the entire completion process must 

be started again, using the newly updated set, R.

If all critical pairs generated from any version of R conflate, then that version is 

a complete set of reductions equivalent to S. However, there is also a possibility that 

the completion procedure will never halt; some complete sets of reductions are infinite 

in size. An example of one such complete set of reductions is given in the discussion 

of the work of Peterson and Stickel.

4. Failure-Resistance.

Several years after the development of the Knuth-Bendix completion procedure, 

Forgaard and Guttag conceived the notion of a failure-resistant completion procedure 

[FG84]. Their method does not always prevent the completion procedure from 

failing, but it can in some cases. It is based on a surprisingly simple idea. When a 

critical pair based on a surprisingly simple idea. In the original Knuth-Bendix 

procedure, when a critical pair is reduced to two distinct terms that have identical 

weights, the procedure halts with failure. In the failure-resistant Knuth-Bendix 

procedure, such a critical pair is shelved, or put aside, and work continues on the next 

critical pair. When all critical pairs have been processed, those that were shelved are 

reprocessed, since a reduction added to the set of reductions after a shelved pair was 

set aside may now enable it to be conflated or ordered into a reduction; if not, the 

pair will be reshelved. This iterative process continues either until all shelved pairs 

have been successfully handled, producing a complete set of reductions, or until no 

shelved pair can be conflated or ordered, leading to failure of the procedure.
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KB-COMPLETION(S);
begin

R : = the set of reductions formed from the equations of S; 
repeat

Status := SUCCESS; 
for (Vr, = At -> p, e R) 

for (Vr2 = X2-> p2e R)
for (V/e sdom( î)) begin (1)

d : = UNIFYUJi, X2); 
if $ exists 
then begin

/,: = REDUCE*^.), R); (2)
t2: = REDUCE*(0(J,L/ <- p j), R)\ (3)
case

tx = t2:
I* Successful Conflation */ ; 

weighty,) > weight(r2): begin 
add r, -> t2 to R\ 
inter-reduce R\
Status : = LOOP; 
exit outer "for" loop; 

end;
weight^,) < weight(/2): begin 

add t2 -> r, to R\ 
inter-reduce R\
Status := LOOP; 
exit outer "for" loop; 

end;
weight^) = weight(r2): begin 

Status := FAILURE; 
exit outer "for" loop; 

end; 
end; 

end; 
end;

until (Status = SUCCESS) or (Status = FAILURE); 
retum(Status, R); 

end;

Notes:
REDUCE*( Term, Reductions) returns an irreducible form of Term, 

with respect to Reductions.
UNIFY(Term„ TermJ is Robinson's unification algorithm for a 

pair of terms, Term, and Ternij.

Figure 7. The Knuth-Bendix completion procedure
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C. THE PETERSON-STICKEL E-COMPLETION PROCEDURE

Although the Knuth-Bendix completion procedure is certainly interesting, it has 

some serious limitations. For example, two axioms which are common to many 

equational theories are those of associativity and commutativity. But, the 

Knuth-Bendix procedure cannot properly address either of them without destroying 

the finite termination property of the set of reductions. A commutativity axiom, such 

asyfc, y ) = A y, x )> quite obviously cannot be ordered into a reduction, and will cause 

the completion procedure to fail. An axiom of associativity, such as 

AAx, y), z) = A X, f(y, z)), can be transformed into a reduction, 

A A X, y), z) —*J[x, J{y, z)). But the Knuth-Bendix procedure is not totally general in 

its treatment of associativity as a reduction, and can lead to non-termination of the 

procedure. The following example, 4.3, was given by Peterson and Stickel.

Example 4.3: Let the set of equations input to the Knuth-Bendix completion 

procedure be the equations,

AAx, y), Z )  =J[x, f(y, z)), (i)
f a ,  b) = b, and (2)

f a ,  A x, b)) = A x, b). (3)

The Knuth-Bendix procedure will produce an infinite set of reductions,

AAx, y), z) -+A*, Ay, z)),

A<*, b)-+ bt

Aa, A x , b)) -+J[x, b),

A<*, A x . A x 0, b))) -+Ax, A x 0, b)),

A x, A x o, A x i, £)))) -+Ax, A xo, Axi, b))),
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However, Peterson and Stickel observed that if equation (1), the associativity axiom 

for operator / , is removed from the set of equations and /  is assumed to be an 

associative operator, then the two reductions,

J[a, b) -* b and

J[a, J[x, b)) b),

constitute a complete set of reductions for the set containing equation^ (2) and (3).

This observation was used by Peterson and Stickel to develop extensions of the 

Knuth-Bendix procedures. The set of equations, S, input to the Peterson-Stickel 

procedure is divided into two sets, E and R. The set £  is a subset of S for which 

there exists a finite, complete E-unification algorithm. All other members of S  are 

ordered into reductions to form R. There is a restriction on the members of £, 

however: All reductions in E must be linear, collapse-free equations, that is, every 

variable occurring in an equation must appear exactly twice, once in each side of the 

equation.

In addition to the necessity of an E-unification algorithm for the set £, an 

E-matching algorithm and an algorithm for proving E-equality, with respect to £, are 

also needed in order to implement an E-completeness decision procedure or an 

E-completion procedure. Peterson and Stickel showed that the existence of an 

E-unification algorithm for E  implies the existence of the other two algorithms.

1. E-Complete Sets of Reductions.

An equational theory, /:, partitions the set of all terms into equivalence classes. 

Further, since the equations are linear and collapse-free, the equivalence classes are 

finite in size. A new relation, -+ , which is equivalent to the composition of relations, 

= ° ~r ° 7  * be used to specify the rewriting of any member of one equivalence 

class to any member of another. The transitive closure and reflexive, transitive
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closure of —► are the relations, -►+ and ->*, respectively. The relation -* may also be
R/E R/E R/E R/E

written as R/E, and its closures written as R/E+, and R/E7. The definition given 

previously for complete sets of reductions can now be extended to provide fbr a 

non-empty equational theory.

Definition 4.5: Let E be a linear, collapse-free equational theory. A set of reductions 

R is an Incomplete set o f reductions if, for all terms s and / which are equivalent with 

respect to R, s -+Y, t -*Y, and s' = f .
R/E RIE E

In a manner similar to that used by Knuth and Bendix, it can be proven that a 

set of reductions R is E-complete if and only if all critical pairs of the members of R 

conflate and R is an E-compatible set of reductions. The critical pairs used to test for 

E-completeness have the same form as those used to test for standard completeness: 

< 0{px), #(>liE/ <-p2]) > • However, it is almost certain that the number of critical 

pairs will be greater in the E-completeness test. This is because the null-E unification 

of each pair AJi and A2 in the completeness test produces, at most, one most general 

unifier, and thus, one critical pair. However, the E-unification algorithm used in the 

I'-complcteness test returns a (finite) set of maximally general unifiers, each 

corresponding to a critical pair. This fact once again emphasizes the need for a 

minimal E-unification algorithm, or at least one that is as minimal as possible.

2. E-compatibility.

The second requirement for E-completeness is the E-compatibility of the set of 

reductions. This property is defined as follows.

Definition 4.6: Let £  be a linear, collapse-free equational theory and R be a set of 

reductions. Assume, without loss of generality, that the elements of £ U  R arc 

variable disjoint. If, for all /=  r e E  and 2, -*• p, e R such that i e sdom(/), i #  e, and 

l/i and Ax are E-unifiable, there exists a reduction A2-> p2e R and a set of
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substitutions a such that /[/<- i , ]  = and /[/«- p ,] ->'o(p2), then R is
E R/ E

E-compatible.

The goal of Peterson and Stickel was to develop an E-complcteness decision 

procedure and E-completion procedure for AC theories. An AC equational theory is 

one containing both an associativity axiom and a commutativity axiom for a set of 

operators. In order to insure E-compatibility for a set R, of reductions, with respect 

to an AC equational theory, they developed the concept of reduction extension.

Definition 4.7: Let r = A —> p e R, such that Lroot = /  is an AC operator. The AC  

extension o f r is the reduction K4C = f[x , Ax) —*J[x, p j, where jc^vars(r). The AC  

extension o f R is the set R\c = {r*AC | r e R a A.root is an AC operator} U R.

It can be proven that if' E is an AC theory and R is a set of reductions, then R\c 

is E-compatible. Therefore, if E is an AC theory, the E-completcness of a set of 

reductions, R , possessing the finite termination property can be decided solely by 

checking for the conflation of all critical pairs produced from the reductions.

3. The AC Completion Procedure.

The Peterson-Stickel E-completeness decision procedure can be extended to an 

E-completeness procedure in much the same way that the Knuth-Bendix completeness 

decision procedure was extended. The pseudo-code for this procedure is given in 

figure 8.
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PS-COMPLETION(S);
begin

Reductions : = EmptySet;
Pairs := EmptySet;
Eqs : = S;
while ((Pairs #  EmptySet) or (Eqs EmptySet)) do begin 

if Eqs = EmptySet
then MAKE-CRITICAL-PAIRS(Pairs, Eqs); 
else begin

< s, t > : — the member of Eqs with the Smallest weight; 
Eqs:=  Eqs — { < s, t > };
s, := REDUCE*(s, Reductions);
t, RHI)lJCE*(t, Reductions); 
if s, = t,
then /* Successful conflation */ 
else begin

ADD-REDUCTION(Si, t,, Reductions, Pairs); 
INTER-REDUCE(Reductions, Pairs); 

end; 
end; 

end;
retum( Reductions); 

end;

Notes:
REDUCE*(7erm, Reductions) returns an irreducible form of Term, 

with respect to Reductions.

F ig u re  8a. T h e  P e te rso n -S tic k e l A C  c o m p le tio n  p ro c e d u re , p a r t  1 o f  3.
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ADD-REDUCTION(s, t, Reductions, Pairs); 
begin 

ease
>veight(s) > weight(t):

A -* p : = s —► /; 
weight(s) < weight(t):

A -*■ p : = t s; 
weight(s) = weight(t):

HALT WITH FAILURE;
end;
Reductions := Reductions [j {A —► p}; 
for f e Reductions

Pairs : = PairslJ {<  A -> p, r>  , < A-+ p, r*AC> , 
<  “ > Pac* r > » ^ * P!io ^ }»

end;

MAKE-CRITICAL-PAIRS(Pairs, Eqs); 
begin

{Ax -+ Pi* A2 -+ p2] := the member of Pairs with the smallest value of 
weight^,) + weighty);

Pairs := Pairs — (2, —> p„ 22 -> p2);
Eqs : { < a(p,), a{o2) > | n c csu(2„ A2)\

(J { < <r(p,), cr(>t,L/ <— p2]) > | Ax -* p, is not an extension 
A / 6 sdom^,) A <7 6 csu(2,//, 22)}

(J{<  o(p2), ct(22[ /  <- px]) > \ A2 -» p2 is not an extension 
a i e sdom(>l2) a a e csu(AJi, A,)};

end;

Figure 8b. The Peterson-Stickel AC completion procedure, part 2 of 3.

The variable Eqs is a list of term pairs which must either conflate or be 

transformed into reductions; its initial value is the set of input equations, S. Pairs 

contains all reduction pairs that have not yet been through the superposition process, 

that is, the generation and attempted conflation of all critical pairs that can be 

formed from the pair of reductions. Whenever Eqs has been emptied, it is replenished 

by a call to the procedure MAKE-CRITICAL-PAIRS(Pa/r.s, Eqs), which picks a 

member of Pairs and stores all critical pairs generated from that member into Eqs. If 

Eqs is empty and Pairs is also empty, then all reduction pairs have successfully passed
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INTER-REDUCE(Reductions, Pairs); 
begin 

repeat
Status := SUCCESS;
for X -*> p e Reductions begin

Xx := REDUCE*(>i, Reductions — {X -* p}); 
p, := REDUCE*(p, Reductions — ( i -► p}); 
if (;. *  A,) or (p #  p,) 
then begin

for r e Reductions
Pairs : = Pairs— {<>!-► p, r>  , < X -> p, r*AC> ,

^  ^AC P'aCi r > i < J-AC PaC» ^  ) >
Reductions := Reductions — {X —> p};
ifyt, =p,
then /* Successful conflation */ 
else begin

ADD-REDUCTION(A„ p„ Reductions, Pairs); 
Status : = LOOP; 
exit "for" loop; 

end; 
end; 

end;
until Status = SUCCESS; 

end;

Figure 8c. The Peterson-Stickel AC completion procedure, part 3 of 3.

through the superposition process, and Reductions is a complete set of reductions 

equivalent to the input set of equations, S.

When a reduction is added to Reductions, it is paired with all reductions 

(including itself) and their AC extensions, and these pairs are added to Pairs. In a 

similar fashion, if a reduction is removed from Reductions during inter-reduction 

simplification, all pairs incorporating that reduction or its AC extension are removed 

from Pairs.
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D. THE JOUANNAUD-KIRCHNER EXTENSIONS

The procedures developed by Peterson and Stickel subsume the work of Knuth 

and Bendix. In a like manner, the work of Jouannaud and Kirchner [7^86]. 

subsumes that of Peterson and Stickel, and others. Their work represents no major 

stride forward in the study of complete sets of reductions, as did that of Knuth and 

Bendix, and Peterson and Stickel. Rather, it is an attempt to "tidy up" and generalize 

the work that had come before.

1. Confluence and Local Confluence Revisited.

Jouannaud and Kirchner found that the investigation of E-complete sets of

reductions could be made simpler and more general by replacing the relation, , by

a new relation , - * *, which can be any relation satisfying the inequality ,
r e

The transitive closure and the reflexive, transitive closure of —► are the
* r e  ri e re

relations -►+ and -+*, respectively. These relations may be written as RE, RE+, and
Re  Re

RE*. Among other things, this permits an easing of the restriction placed on the 

equational theory, E, requiring it to be linear and collapse-free, to one simply 

requiring that it generate finite equivalence classes.

The properties of Church-Rosser, confluence, and local confluence, which are so 

important in the Peterson-Stickel procedures, can be formally restated for 

E-completeness in terms of -* .

Definition 4.8: Let R be a set of reductions and let E be an equational theory 

defining finite equivalence classes. Let T  be the set of all terms.

(1) /? is RE -Church-Rosser modulo E iff (Vs, t, s ', t* e T) s and / are considered

equivalent, s ->Y, and t -*Y imply that s' = t'.
r E r E e

(2) RE is confluent modulo E iff (Vr, /„ t2 e T) /->*/, and / —>'t2 imply that
rE r E

(3/,'. V e T) t, /, ->V, and t
r E rE e
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(3) RE is locally confluent modulo E  with R ifT (V/, t2 e T) t -+ /, and / -► t2
r e  r

imply that (3//, t2 e T) /, tx ->*//, and = t2 .
rE r E e

The properties of definitions 4.8.(2) and 4.8.(3) are illustrated in figure 9.

2. Coherence and Local Coherence.

Recall that Peterson and Stickel defined the property of E-compatibility, and 

showed it to be a necessary property to insure the E-completeness of a set of 

reductions. This property was generalized by Jouannaud and Kirchner into a 

property called coherence. As can be seen by comparing confluence in figure 9(a) 

with coherence in figure 10(a), these two properties are both instances of the lattice 

condition defined by Knuth and Bendix. In fact, just as confluence can be deduced by 

proving local confluence, coherence can be inferred from local coherence, pictured in 

figure 10(b).

Definition 4.9: Let R be a set of reductions and let E be an equational theory 

defining finite equivalence classes. Let T  be the set of all terms.
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(1) RE is coherent modulo E iff (V/, slf t2e T )  and t = t2 imply that
r e  e

(3//, t2 e T )  tx tx ->72'. and tx = t2' .
r e  r e  e

(2) RE is locally coherent modulo E iff (V/, t2e T) t tx and / -+ t2 imply that

(3//, t2 e T )  tx /, ->72', and = t2 .
r E r E E

The relation, -+ , used in definition 4.9.(2) specifics a rewrite performed using a 

member of E, rather than a member of R.

An E-terminating set o f  reductions, R, modulo E is a set of reductions, R, for 

which —> has the finite termination property. With these definitions in place, theoremR/E
4.1 can now be extended from complete sets of reductions to E-complete sets of 

reductions.

Theorem 4.2: The following statements about a set, Rt of E-terminating reductions 

and an equational theory, £, which defines finite equivalence classes are equivalent:.

(1) R is an I •-complete set of reductions.

(2) R is /££-Church-Rosser modulo E.

(3) RE is confluent modulo E and RE is coherent modulo E.

(4) RE is locally confluent modulo E and RE is locally coherent modulo E .
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3. Confluence and Coherence Critical Pairs.

Theorem 4.2 states that a proof of local confluence and local coherence 

constitutes a decision procedure for the E-completeness of a set of reductions, R. As 

shown by Peterson and Stickel, local confluence can be proven by generating and 

successfully conflating all critical pairs of reductions from /?, now to be called 

confluence critical pairs. Jouannaud and Kirchner prove that local coherence can 

likewise be proved by generating and successfully conflating all coherence critical 

pairs. A coherence critical pair is formed from an equation, / = r e E \J Ec, and a 

reduction, A —► p e R, and has the form < 0(/[i <— p]), Q(r) > , where / e sdom(/), 

B e csu(///, A), and Ec = [b = a | a = h e E).

4. Dynamic Extensions.

Peterson and Stickel created an AC extension of each member of R with an AC 

left-hand term to insure the E-compatibility, or coherence, property for the AC 

completion procedure. Jouannaud and Kirchner introduced a more refined definition 

called dynamic extensions; no extensions are added unless absolutely necessary. If an 

equation, / = r, and a reduction, A -*• p, fail to cohere, that is, one of their coherence 

critical pairs , < 0{l\_i <— p]), B(r) > , fails to conflate, then an extended reduction of 

the form /[/ <- 2] -* /[/« - p ] is added; the procedure then starts over using the 

updated set of reductions. The newly added reduction guarantees coherence for the 

equation and the reduction from which it was formed. This is a better approach than 

that used by Peterson and Stickel, since fewer reductions added to R mean fewer 

critical pairs to manipulate.
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V. IMPLEMENTATION NOTES ON E-UNIFICATION AND E-COMPLETION.

A. E-UNIFICATION

The E-unification algorithm implemented for this research operates upon terms 

that are composed of variables, constants, commutative (C) operators, 

associative-commutative (AC) operators, and associative-commutative-with-identity 

(ACI) operators. Upon entry into the algorithm, the two terms are assumed to be 

flattened with respect to associativity and identity. The function E-UNI FY, described 

in figure 11, is the top level function and the interface to application programs 

requiring E-unification. In it, some simple analyses are performed on the terms to be 

unified and, as a result, the terms are passed to the appropriate E-unification 

"module". Each of these modules may in turn recursively invoke E-UNI FY or some 

other module to assist in its work. A third input parameter, PartialUnifier, is passed 

along with the terms (or subterms) to be unified. It is a partially constructed unifier 

that either will be updated at each level of recursion to reflect the successful 

unification of its accompanying terms, Termx and Term2, or will be terminated and 

discarded if the terms cannot be unified without violating the substitutions already in 

PartialUnifier. The initial value of PartialUnifier is the identity unifier, that is, the 

empty set. Upon termination, E-UNI FY or any of the E-unification modules returns 

a set of unifiers; if this set is empty, then the pair of terms have no unifier. The 

recursive approach used in this implementation is loosely based on the E-unification 

model described by Yelick [  Ye85]. However, Yelick's model was designed only to 

work with confined, regular equational theories, and ACI theories do not fall into 

that category.

Figure 12 contains the pseudo-code for a null-E unification module. It is really 

a recursive version of Robinson's unification algorithm. If the two terms to be 

unified are non-atomic, that is, they are not variables and not constants, processing
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E-UNI FY(Term,, Term2, PartialUnifier); 
begin 

case
Term, ”  Tcrm2:

/* Term, and Term2 unify by the identity unifier */ 
return(PartialUnifier);

Term, and Term2 are both atomic terms:
/* Call upon the recursive Robinson algorithm */ 
NULL-E-UNlFY(Term„ Term2, PartialUnifier);

Term, is an atomic term: 
if Term2.root e Faci
then ACI-UNIFY(Term,, Term2, PartialUnifier) 
else NULL-E-UNIFY(Term„ Term2, PartialUnifier); 

Term2 is an atomic term:
/* Reverse the roles of the two terms and come in again */ 
E-UNIFY(Term2, Term,, PartialUnifier);

Term,.root e Fc and Term2.root e Fc:
C-UNIFY(Term,, Term2, PartialUnifier);

Term,.root e FAC and Term2.root e FAC:
AC-UNIFY(Term„ Term2, PartialUnifier);

Term,.root e FACl or Term2.root e FACJ:
ACI-UNIFY(Term,, Term2, PartialUnifier);

Otherwise:
/* All other term combinations arc handled as null-E */ 
NULL-E-UNI FY(Term„ Term2, PartialUnifier);

end;
end;

Figure 11. The top level function of the recursive E-unification algorithm.

proceeds left-to-right through the operands of the terms, which are pairwise unified 

through a recursive call to E-UNI FY. The unifiers of each operand pair are used to 

update the unifiers returned from previous pairs, such that upon completion, the set 

of unifiers represents those unifiers that will unify all operand pairs, simultaneously.

Sickmann's algorithm [5i79], as depicted in figure 13, was implemented to 

permit the unification of commutative terms. If Term, and Terntj have the same 

commutative operator, then unification can be attempted. Commutativity is 

simulated by generating the set of all terms that are C-equal to Termx through the 

permutation of the top-level operands of the term. Then, each of these permuted
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NULL-E-UNIFY(Term,, Term2, PartialUnifier); 
begin 

case
Term, = Tcrm2:

/* Term, and Term2 unify by the identity unifier */ 
return(PartialUnifier);

Term, is a variable:
if Term, occurs in Term2 
then

/* Occurs check failure */ 
return(EmptySet)

else retum({Term, <— Term2}° PartialUnifier);
Term2 is a variable:

j* Reverse the roles of the two terms and come in again */ 
NULL-E-UNIFY(Term2, Term,, PartialUnifier);

(Term, is a constant) or (Term2 is a constant):
/* If they were equal constants, the first case would have caught it *j 
retum(EmptySet);

Term,.root = Term2.root: begin 
FinalPartials : = {PartialUnifier};
/* Pairwise unify the operands of Term, and Term2*/ 
for i := 1 to OPERANDS(Term,) begin 

WorkPartials : -  EmptySet; 
for a e FinalPartials 

WorkPartials : =
WorkPartials U E-UNI FY(«r(Term,//), <r(Term2//), <r); 

FinalPartials := WorkPartials; 
end;
retum( FinalPartials); 

end;
Otherwise:

I* All other cases are terms with different root operators */ 
retum( EmptySet);

end;
end;

Notes:
OPERANDS(7erm) returns the number of top-level operands of Term.

Figure 12. A recursive null-E unification algorithm.

terms is paired with Tern^ and unified as though its common root operator was a 

null-E operator.

Example 5.1: Let /  be a commutative operator and g be a null-E operator. Let

5 =J[w, x , y) and
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t =f[a, by c) be terms. Then 

csu(s, /) = csu(s,, /) (J csu(s2, /) U csu(s3, r) 

U  csu(s4> t) U  csu(5s, t) U csu(s6, /)

such that

•Si =  g(w, x, y), 

h = y> *), 

■h = g(x, w, y),

s* =  g(x, y ,  v v ) ,

= #0, w, jt), and 

$> = £0, w ) .

C-UNIFY(Term,, Term2, PartialUnifier); 
begin

if Term,.root = Term2.root 
then begin

I* This is a heuristic to speed up C unification */ 
if C-OPERATORS(Ternij) > C-OPERATORS(Term2) 
then

/* Swap Term, and Term2 */
Term, Term2;

FinalPartials := EmptySet;
do t e  PERMUTED-TERMS(Tcrm,)

/* Unify the permuted term and Term2 as null-E terms */ 
FinalPartials : =

FinalPartials (J NULL-E-UNIFY(r, Term2, PartialUnifier); 
retum( FinalPartials); 

end 
else

/* Term, and Term2 have different root operators */ 
retum(EmptySet);

end;

Notes:
C-OPERATORS( Term) returns the count of commutative operators at 

all levels within Term.
PERM UTED-TERMS( Term) returns a list of all permutations of the 

commutative term Term.

Figure 13. Siekmann's C unification algorithm.
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The AC unification algorithm implemented is not presented here. It is Stickel's 

general AC unification algorithm, and is described in chapter 3. The ACI unification 

algorithm implemented is depicted in figure 14. It is a modification of Stickel's AC 

unification algorithm. Stickel briefly described some of the changes necessary to 

perform this transformation [S/75], but two important cases are not discussed: the 

first is how to proceed when one of the terms has an ACI root operator and the other 

does not, and the second is how to proceed when the two terms have different ACI 

root operators. We developed a method for handling both cases, only to discover 

after further investigation that Fages had mentioned the same method several years 

earlier [Fa84]. The method for the first case, as seen in function ACI-UNIFY2 of 

figure 14b, entails constructing from the non-ACI term, a term that has the same root 

operator and the same number of operands as the AC I term. The non-AC I term acts 

as one of the operands of this new term, and the identity of the ACI operator acts as 

all other operands. The two ACI terms are then unified by recursively invoking 

ACI-UNIFY. When unifying two terms with different ACI root operators, the same 

method is used twice. In each case, one of the ACI terms plays the part of the 

non-ACI term. The results are then joined. (See statement (1) in figure 14a.) A 

proof of correctness, completeness, and termination of the ACI unification algorithm 

is given by Fages in the same paper.

Example 5.2: Let /  be an ACI operator with an identity, e, and let g be an AC 

operator. Let s =J[w, x, y) and t = g(w, v) be terms. Then the set of unifiers for s 

and t is the set of unifiers for the terms s and /', where 

f  =A.g{“, v), e, e).

This could be represented as

t"=Ag{u, v)).



www.manaraa.com

6 8

Example 5.3: Let /  and g be ACI operators with identities ex and e2, respectively. Let 

s =J[w, x, y) and i = g(u, v) be terms. Then the set of unifiers for s and / is the set of 

unifiers for the terms s and /' added to the set of unifiers for the terms s' and /, where 

a' = £ (/K  x, y), e) = g(J[w, x, y))

and

f  v), e, e) = J[g{u, v)).
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ACI-UNIFY(Term1, Term2, PartialUnifier); 
begin 

case
(Term! is a variable) or (Term2 is a variable):

retum(NU L L- E- U NIF Y(Term,, Term2,PartialUnifier));
(Term, is a constant) or (Term,.root^Fi4C/):

retum(ACI-UNIFY2(Term„ Term2,PartialUnifier));
(Term2 is a constant) or (Term2.root^Fi4C/):

/* Switch the roles of Term, and Term2 */ 
return( AC 1 - UN 1F Y2(Term2, Term,,PartialUnifier));

Term,.root ^  Term2.root:
rcturn(ACl-UNIFY2(Tcrm,, Tcrm2, Partial Unifier) (1)

U ACI-UNIFY2(Term2, Term,, Partial Unifier));
Otherwise: begin

NewTerm,: = ABSTRACT(Term,);
NewTerm2: = ABSTRACT(Term2);
AbstractSet : = abstraction set from previous two statements 
AbstractUnifiers := ACI-UNIFY-VO(NewTerm,, NewTerm2); 
if AbstractUnifiers exist 
then begin

NewPartials := (PartialUnifier); 
for a e AbstractUnifiers

for x  <- t e  AbstractSet begin 
Unifiers := EmptySet; 
for d e NewPartials

if (a(jc).root is AC) and (<r(/).root is AC)
Unifers := Unifiers U E-UNI FY(<t(jc), ct(/), 0) 

NewPartials := Unifiers; 
end;

return(NewPartials);
end
else

I* There are no unifiers of Term, and Term2 */ 
return( EmptySet);

end;
end;

end;

ABSTRACT(7Vrm) returns a variable abstraction of Term. 
ACI-UNIFY-VO(7>rm„ Term2) is Stickel's variable-only ACI 

unification algorithm.

F ig u re  14a. T he A C  I -u n if ic a tio n  a lg o r ith m  im p lem en ted , p a r t  1 o f  2.
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ACI-UNIFY2(Term,, Term2, PartialUnifier); 
begin

/* Term2 is assumed to be an ACI term of the formyl/,, ..., /„) */ 
NewTerm := Term2[ l  <— Term,]; 
for i = 2 to n

NewTerm := NewTerm[/<— IDENTITY(Term2.root)]; 
retum(ACI-UNIFY(NewTerm, Term2, PartialUnifier)); 

end;

Notes:
IDENTITY(ACIOperator) returns the identity element o f ACIOperator.

Figure 14b. The AC I-unification algorithm implemented, part 2 of 2.

B. THE E-COMPLETION PROCEDURE

The E-completion procedure implementation used in this research is that 

developed by Peterson and Stickel [PS81]. Failure-resistance, as described by 

Forgaard and Guttag [FG84], was added to the procedure to increase its likelihood 

of success. (Failure-resistance is discussed in chapter 4 of this paper.) The top level 

E-completion procedure is depicted in figure 15a, and the modified versions of 

PS-COMPLETION (now called CSR) and ADD-REDUCTION (now called 

CSR-ADD-REDUCTION) are presented in figure 15b.

Our implementation of the E-completion procedure also incorporated the 

concept of conditional reductions. A conditional reduction is a reduction of the form 

(conditions)}. —> p,

such that (conditions) is a set of restrictions, in conjunctive normal form, on the 

variable values in a term match between X and any term. Thus, in order to rewrite a 

term using a conditional reduction, a term match must be found that does not violate 

the conditions of the reduction. The topic of conditional reductions is outside of the
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scope of this paper; Baird gives a detailed presentation on the subject of E-completion 

procedures involving conditional reductions [Zta88].

Example 5.4: Let -I- be an ACI operator with an identity element, 0, and let — be a 

null-E operator. Let

r = (((* #  0)v(y *  0 ) )) - (  + (*f j ) ) -  + (-(* ) , -  0)) 

be a conditional reduction. Any term match, a, between a term and the left-hand side 

of r may be used to rewrite the term using r if at least one of jc  or y  is assigned a 

non-zero value.

E-COMPLETION(S, Reductions); 
begin

NewReductions, Shelved := CSR(S, Reductions); 
while (NewReductions #  Reductions do begin 

Reductions := NewReductions;
NewReductions, Shelved := CSR(Shelved, Reductions); 

end;
if Shelved = EmptySet 
then retum(NewReductions) 
else HALT with FAILURE;

F ig u re  15a. T h e  E -c o m p le tio n  p ro c e d u re  im p lem en ted , p a r t  1 o f  2.
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CSR(S, Reductions); 
begin

Pairs := EmptySet;
Eqs : = S;
Shelved : = EmptySet;
while ((Pairs #  EmptySet) or (Eqs #  EmptySet)) do begin 

if Eqs = EmptySet
then MAKE-CRITICAL-PAIRS(Pairs, Eqs); 
else begin

< s, t>  := the member of Eqs with the Smallest weight;
Eqs:= Eqs — { < s, t>};
s, := REDUCE*(s, Reductions);
t, := REDUCE*(t, Reductions); 
if s, = t,
then /* Successful conflation */ 
else begin

CSR-ADD-REDUCTION(s,, t„ Reductions, Pairs, Shelved); 
if < slt /, > was not added to Shelved 
then INTER-REDUCE(Reductions, Pairs); 

end; 
end; 

end;
return( Reductions, Shelved); 

end;

CSR-ADD-REDUCTION(s, t, Reductions, Pairs, Shelved); 
begin 

case
weight(s) > weight(t):

A -» p : = s —► /; 
weight(s) < weight(t):

A -> p : = t —> s\ 
weight(s) = weight(t):

Shelved := Shelved U  { < Mi >  }*,
end;
Reductions := Reductions U p}\ 
for r e Reductions

Pairs : = PairsU { < 2 -► p, r > , < A-> p, r*AC> ,
<  J-A C  P A C t  r  ->  » ^  ^ -A C  P*AC* r A C > } ' *

end;

Notes:
REDUCE*(Term, Reductions) returns an irreducible form of Term, 

with respect to Reductions.
INTER-REDUCE(R^wc//o«s, Pairs) is as described for use by the 

procedure PS-COMPLETION.

F ig u re  15b . T h e  E -c o m p le tio n  p ro c e d u re  im p lem e n te d , p a r t  2 o f  2.
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VI. TERM SYMMETRY

Experience has shown that a major portion of the time and processing effort 

required to complete an incomplete set of reductions using an E-complction 

procedure, such as those discussed in chapter 4, is spent in the calculation and 

subsequent testing for confluence and coherence of critical pairs. Pruning techniques 

that remove from consideration those critical pairs that represent redundant or 

superfluous information, either before, during, or after their calculation, can therefore 

make a marked difference in the run time and efficiency of an E-completion procedure 

to which it is applied. These potential savings are, however, dependent upon the 

efficiency of the pruning technique invoked. If it takes longer to decide that a 

particular critical pair may be discarded than it would take to process the critical pair, 

then the pruning technique is probably of little use, other than to reduce the size of 

the solution space.

In this chapter, a new technique is proposed for removing critical pairs from 

consideration at various points before, during, or after their formation. This method 

is based on the property of term symmetry, which will be defined and explored with 

respect to E-unification and E-completion procedures

A. ALTERNATIVE PRUNING TECHNIQUES

Kapur, Musser, and Narendran [ 0 /8 6 ]  developed and implemented a 

technique for identifying and discarding redundant critical pairs during the 

E-completion process. It is based upon earlier work performed by Lankford 

[La75]. In their procedure, the superposition associated with each critical pair is 

examined in order to decide whether the critical pair should be processed or 

discarded. They define a superposition as a 4-tuple,

( ^ i  P i t  ^ 2  P i t  0 )»
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such that Xx -> p, and X2 -+• p2 are reductions, and such that S(XJi) = 0(X2), that is,
E

6 e csu(XJi, X2). Associated with each superposition is a critical pair of the form 

<0(pi), <-P2]) > •

The bag (multiset) of superpositions for a given pair of reductions can be divided 

into two classes: composite superpositions and prime superpositions. A composite 

superposition is one for which 0(i2), thatis, O(XJi) has a proper reducible subterm. A 

prime superposition is one which is not composite.

Kapur et al. proved that if a superposition is composite, it has an equivalent 

superposition which can be factored into two prime superpositions with which the 

original composite superposition can be replaced. They also show that the bag of 

critical pairs corresponding to the prime superpositions is sufficient for use in an 

E-completion procedure. This technique decreases the processing time spent reducing 

critical pairs to terminal form, since the critical pairs corresponding to composite 

superpositions are discarded before they are simplified. However, no unification time 

is saved: Complete sets of unifiers must still be generated, and each unifier must still 

be applied to Xx in order to form the superpositions.

A variation of the composite/prime superposition pruning technique identifies 

and eliminates unblocked superpositions. An unblocked superposition is a 

superposition which contains an unblocked unifier. An unblocked unifier, as described 

by Lankford, is a unifier, 6 = {x, «- r„ ..., jc„ «- tn}, in which at least one of the terms 

/„ ...,  tn is reducible. A unifier in which all right-hand terms are in terminal form is a 

blocked unifier, and the corresponding superposition is a blocked superposition.

Every unblocked superposition is also a composite superposition. This is 

because, if a right-hand term in 6 is reducible, and X2 is non-trivial (being the 

left-hand side of a reduction), then 0(X2) will also contain that same right-hand term
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as a proper, reducible subterm. Thus, unblocked superpositions can be discarded 

without affecting the results of E-completion.

However, the converse is not true; a blocked superposition may be either 

composite or prime. Thus, the cardinality of the bag of prime superpositions will be 

less than or equal to that of the bag of blocked superpositions. This would appear to 

be an advantage in favor of the composite/prime method. However, one must 

consider that the unblocked/blocked method has an additional savings in processing; 

since only the unifier is examined to determine the worth of a superposition, the 

superposition does not actually have to be constructed, that is, the unifier does not 

have to be applied to JLJi or X2.

Unfortunately, Kapur et al. did not give comparisons of the two pruning 

techniques that they describe. However, they did discuss their implementation and 

results for the unblocked/blocked technique. When dealing only with null-H 

operators they found that, in general, the processing time saved by discarding 

unblocked critical pairs prior to their reduction to terminal form is less than that 

spent searching for those critical pairs. But, their tests show a significant savings 

when AC operators are present (as much as 70% savings on total critical pair 

reduction times, for some examples). They attribute the difference between the null-E 

and AC cases, at least in part, to the facts that AC unification usually results in 

multiple mgus (most general unifiers) and AC unification algorithms are not usually 

minimal (that is, redundant unifiers are present in the complete sets returned by the 

algorithms).
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B. THE DEFINITION OF TERM SYMMETRY

The concept of term symmetry is a simple one. It is based on the realization 

that variable names used in a term are just symbols acting as placeholders for actual 

variables, and mapping those symbols to a different set of symbols will not change 

any aspect of the term, other than the variable names. This is the same idea that 

permits variables to be renamed in order to assure that terms involved in unification 

are variable-name disjoint. We begin by defining variable renaming.

Definition 6.1: A set o f variable renaming substitutions or a variable renaming is a set 

of substitutions,

°  =  {*i<- y» ~ ,Xn*-yn},

which is a one-to-one, onto mapping from the set of variables, {xh ... , x„}, to the set 

of variables , {yXt ... , y„}. Any substitution , jc , <—y„ such that x, = y t is an identity 

substitution and may be dropped from a. The identity variable renaming is the empty 

set, {}. The application of a variable renaming, <x, to a syntactic entity, /, is written 

as r.

Term symmetry exists between two terms when one can be transformed by a 

variable renaming into the other. This is stated more formally in definition 6.2.

Definition 6.2: Two terms, s and t, are symmetric by or, written as s «  /, if there 

exists a (possibly empty) variable renaming from vars(s) to vars(t),

= Ti. - , x n+-yn}, 

and its inverse,

' =  lVi«- *i, .V,
such that S’ = / and s = r~x. Such a variable renaming is said to be a symmetry of s 

and /. Two terms for which no symmetry exists are asymmetric.
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Note that if o is empty then s = t. Also, note that if s and / are variable 

disjoint, as is usually the case, then a is a match between s and t.

Example 6.1: Let + be a commutative operator (C, AC, or ACI). The two terms 

5  = + (x,, jc,, x2, x3) and / = + (yu y 2, y 2, .>>3) are symmetric by the variable renamings 

°\ = 0*1 *-y2, x2 <-yu *3 <-yJ and a2 = (x, <-y2, x2 x3 * -y {).

Another form of term symmetry that is of interest is the symmetry which can 

exist within a single term. Obviously, symmetry within a term is a consequence of the 

presence of commutative operators.

Definition 6.3: A term, s, is self-symmetric by <7, written as s =s s, if there exists a 

variable renaming from vars(s) to vars(s),

°= {xx*~yx, • •> xn<-yn]},

such that s9 = s. Such a variable renaming is said to be a self-symmetry of term 5 .

All terms are self-symmetric by the identity variable renaming. Since 

self-symmetry is a consequence of commutativity, it can only exist (other than the 

self-symmetry implied by the identity variable renaming) if the term contains one or 

more commutative operators.

Example 6.2: Let + be a commutative operator (C, AC, or ACI). Then the term 

s = + (jc,, jc„ x2, jc3, jt4) is self-symmetric by the variable renamings 

°\ = {x2 <- *3, <- ar2), a2 = [x2 <- xA, xA <- a3 = {x2 +- x4, x4 <- x3},

= {x2 <- x2, x2 a-  x4f x4 a-  x2}, and a5 = {x2 x4, ♦- x3, x3«- x2}.

As illustrated by this example, there can be many self-symmetries within a term. 

Occasionally, it is desirable to express all self-symmetry relations in a term as one 

structure, for example, when deciding if a pair of subterms are symmetric with respect 

to the self-symmetries of their mutual superterm. In order to accomplish this, the 

variables of a term can be divided up into self-symmetry classes, as described below.
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Definition 6.4: The set o f self-symmetry classes of a term, s, written as ssc(s), is the 

collection of sets, each of which contains the mutually symmetric variables of s.

Example 6.3: Let + and s be the operator and term, respectively, described in 

example 6.2. Then ssc(s) = {{Xj}, {jc2, jc3, jc4}}.

This is a concise representation of all self-symmetry relations within a term. The 

value of ssc(s) is unique for a term s.

The concepts of term symmetry and self-symmetry can be naturally extended to 

deal with syntactic structures other than terms, such as pairs of terms, sets of 

substitutions, etc., by viewing such structures as terms.

Example 6.4: Let 4- be a commutative operator (C, AC, or ACI). Let < s, / > be an 

unordered pair of the terms, s = + (jc,, x2, jc3) and / = + (y,, y 2> .tt)- An

unordered pair may be viewed as a term f[s, t) in which /  is a commutative operator 

not occurring in s or t. Then ssc( < s, t > )  = ssc(J[st /)) =

{{*1. -V2}. {x2, jc3, y„  y j}}-

C. TERM SYMMETRY IN E-UNIFICATION AND IN E-COMPLETION

There are four types of term symmetry which may be observed in an 

E-completion procedure: symmetric reductions in the set of reductions being 

completed by the procedure, symmetric critical pairs, symmetric subterms used in the 

formation of critical pairs, and symmetric unifiers produced during the formation of 

critical pairs. The nature of term symmetry suggests that these symmetric syntactic 

structures may be redundant. If so, it should be possible to derive from the 

Peterson-Stickel E-completion procedure an asymmetric E-completion procedure that 

produces the same results without processing symmetric redundancies. Such an
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asymmetric procedure could result in significant savings in processing if the 

identification and elimination of term symmetry can be performed efficiently.

It is the goal of this section to show that an asymmetric E-completion procedure 

can be developed. In order to accomplish this, two points must be proven: first, that 

symmetry between syntactic structures, such as reductions, critical pairs, subterms, 

and unifiers, can be detected, and second, that the processing of a set of pairwise 

symmetric syntactic structures can be replaced by the processing of any one member 

of the set without changing the results produced by the E-completion procedure.

One method for detecting symmetries between syntactic structures, albeit a very 

inefficient one, is to generate all matches that exist between the structures. If one of 

the matches is a variable renaming, there exists a symmetry between the structures. 

A more efficient algorithm for symmetry detection will be presented later.

Proof of the second point is more involved. It must be proven for each of the 

four possible types of term symmetry that may be encountered in E-completion. We 

begin by stating, with respect to term symmetry, two lemmas that are fundamental to 

automated deduction.

Lemma 6.0.1: If s, s', and t are terms such that s s  s', then csufs, /) ss csu(s', /), that 

is, (V0, e csu(s, /)) (302 e csu(s', /)) 0\ = 02.

Proof: This is just a statement of the fact that renaming the variables in a term to be 

unified will change the resulting set of unifiers only be the sartie variable renaming. □

Lemma 6.0.2: If s and / are terms and r is a reduction such that j x  / and s -> s', then
a r

t -* /' in such a way that s'
r a

Proof: In a manner similar to lemma 6.0.1, this is just a statement of the fact that 

renaming the variables in a term to be rewritten by a reduction will change the result 

of the rewriting only by the same variable renaming. □
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1. Symmetric Reductions.

A reduction, X -* p, is an ordered pair of the terms X and p. Two reductions, 

Xx -> p x and X2 -+ p x, are symmetric reductions if there exists a variable renaming, <7, 

such that Xx s  X2 and p, s  p2. The redundancies introduced into the E-completion 

procedure by reduction symmetry are removed by the process of inter-reduction 

simplification.

Inter-reduction simplification is an integral part of the E-completion procedure. 

Recall that when a new reduction is added to a set of reductions being completed, the 

two component terms of each reduction in the set are reduced to terminal form using 

the other reductions in the set. Any reduction reduced to an identity is discarded to 

preserve the finite termination property. If it reduces to an identity, then any 

information carried by the reduction must be embodied within the remainder of the 

set.

To demonstrate how this takes place, consider a member, Xl -> p,, of the set of 

reductions that is symmetric by a variable renaming, o , to a newly added reduction, 

X2 -* p2. By the definition of reduction symmetry, >1, ss X2, or X\ — X2. The variable
0 E

renaming is, therefore, a term match between Xx and X2, so Xx —► p, can be used to 

rewrite X2 -> p2 into a new reduction, o(px) -> p2. But another consequence of the 

symmetry of the two reductions by a is that p, sb p2 or p°x — <r(p,) = p2. Therefore, the
a ' E

new reduction is reduced to an identity and is discarded. Thus, the removal of 

reduction symmetry already takes place in the E-completion procedure as part of the 

inter-reduction simplification process.

Example 6.5: Let the set of reductions at some point in an execution of the 

E-completion procedure be the reductions describing an Abelian group, 

rx:x  + ( —jc) -► 0, 

r2: — ( —jc) —> jc, and
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r3: - ( x + y ) - > ( - x )  + (->),

such that + is an ACI operator and — is a null-E operator. Let

u-y  +  i - y )  o

be a reduction newly added to the set o f reductions. It is the case that r, s  rA by 

o = {x<-y}. Thus a(x + ( — jc ) )  = y  + ( —y), and the left-hand side of rA can be 

replaced by <r(0), or 0. The reduced form of rA is 0 -* 0, which is an identity and must 

be removed from the set of reductions.

2. Symmetric Critical Pairs.

A critical pair, <5, / > , is an unordered pair of the terms 5  and t. Two critical 

pairs, < j„ /, > and <  Sj, t2 > , are symmetric critical pairs, written as 

< /, > ss < s2, t2 > , if there exists a variable renaming, <7 , such that 5, =ss2 and
o o

tx zzt2, or s, and /, ssj. Without loss of generality, we shall assume the former for 

the duration of this discussion.

Critical pair symmetry is the lowest level of term symmetry in the E-completion 

procedure, that is, most term symmetries between reductions, subterms used in 

forming critical pairs, or unifiers will ultimately show up in the form of symmetric 

critical pairs. Removal of the other three types of term symmetry will result in the 

elimination of most, but not all, symmetric critical pairs.

In order to eradicate the remaining symmetric critical pairs, and to lay a 

foundation for use in proving that symmetric subterms and unifiers can be removed, 

it must be shown that discarding symmetric critical pairs will not change the results of 

the E-complction process. We shall begin by establishing some basic facts about the 

terminal forms of terms and critical pairs.

Lemma 6.1.1: If s and t are terms and R is a set of reductions such that s »  /, then#
(V4«) (3 4 *) 4 * = 4 *.
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Proof: The proof is a consequence of lemma 6.0.2. If s s: r, then for each sequence 

of rewrites,

5 = ► 5, —> * Sn — .sj,*,

there must also exist a sequence of rewrites,

/ = r0

for 0 < n, such that

S° 25 /° => .Sj S /j ... 5n S tn.
o o o

Therefore, if 5 ^  t, then (V.sj*) (3/j*) sj* ss rl* □

Lemma 6.1.2: If cpx and cp2 are critical pairs such that cpx« cp2, then
o

(Vc/?^*) (3cp2|*) cpx[ R j  cp2j*.

Proof: Let cpx = < sXt tx > and cp2 = < s2, t2 > . Assume, without loss of generality, 

that sx s  s2 and /, s  t2. Then, as a consequence of lemma 6.1.1,

(Vs,l*) (B^l*) 5,1* j  s2|* and

(V/il-) (3/2l*) ‘d* J  h lR.

Pairing these symmetric terminal forms also yields symmetric critical pairs in terminal 

form,

ca1* =  <*Si!*» 6 l* >  7  cp2l l*  =  < s 2l*> t2i R> .

Therefore, if cpx s  cp2, then (Vc/>,1*) (3cp2j*) cpx[R »  cp2[R. □

If two symmetric critical pairs truly represent redundant information, then it will 

be possible to prove that either one of them is sufficient for the proper operation of 

the E-completion procedure.

Lemma 6.1.3: If cpx and cp2 are critical pairs such that cpx s  cp2t then either cpx or cp2 

may be discarded without changing the results produced by the E-complction 

procedure.

Proof: If cpx ^ c p 2f then it follows from lemma 6.1.2 that

(Vc/7,1*) (3cp2i R) cpx[ R «  cp2[R. Let cpx =  < sx, /, > , cpx[ = < 5,1 , /,! >  ,cpx = < 5„ /, > ,
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cp2 = < s2, t2 > , and cp2\, = < s2j, t2j  > . When a critical pair is reduced to terminal 

form, its two component terminal forms exhibit one of three relationships:

(1) They are provably equal under the equational theory in use.

(2) They are not equal and have different weights.

(3) They are not equal and have identical weights.

In order to accept this lemma, it must be proven for each of these cases.

Case 1: If s,l* = /,!*, then (5 ,l 11)* = (7,1*)'. Since s,l* =s s,i* and /,!* 25 r,l*. it follows
£  £  o o

that (5,1*)' = 521* and (f,!*)* = /21*, and further that 521* = /2j*. Thus, if cpx conflates,
E E  E

that is, reduces to an identity, then so will cp2. Only those critical pairs which do not 

conflate affect the E-completion procedure, so either cpx or cp2 may be discarded 

without affecting the results of the procedure.

Case 2: Since 5,1* ss 5,1* and /, 1* =s r,l*. it follows that weighty, 1*) = weightfs,!*) and
o o

weight(/,l*) = weight^l)* (due to the fact that variables, regardless of their name, 

have the same weight). Thus if weighty, 1*) #  >veight(/,|*), then

weight^]*) # weight(f2l*), and the reductions, r, and r2, formed by ordering the terms 

of cpx 1* and cp21*, respectively, will also be symmetric by a. Thus, if r, is added to 

the set of reductions, and then r2 is added, the inter-reduction simplification process 

will remove r2 from the set of reductions. Reversing the roles of the two reductions 

leads to the same results. Therefore, processing either cpx or cp2 will produce the 

same result as processing both critical pairs.

Case 3: As in case 2, weight(s,l*) = weight^l*) and weighty, 1*) = weight(f2l*). Thus, 

if weight(s,l*) = weighty, 1*), then it will also be true that weightfol*) = weight(/2l*). 

Since a reduction cannot be formed from a pair of unequal terms with the same 

weight, both cpx 1* and cp2[* will cause the E-completion procedure to fail. Therefore, 

processing either cpx or cp2 will produce the same result as processing both critical

pairs.
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Therefore, regardless of the outcome of simplifying the two critical pairs to their 

terminal forms, either cpx or cp2 may be discarded without changing the results 

produced by the E-completion procedure. □

This result may be generalized to deal with a set of symmetric reductions, rather 

than just a pair.

Theorem 6.1: A set of pairwise symmetric critical pairs encountered during the 

E-completion process may be replaced by any single member of that set without 

affecting the results of the process.

Proof: Let {cpx, ..., cpn} be a set of pairwise symmetric critical pairs encountered 

during the E-completion process. Without loss of generality, assume that cpx is the 

critical pair that is to be retained. Since the set is pairwise symmetric, there are n — 1 

symmetric pairs of critical pairs,

< cpXy cp2> , < cpx, cp2 > , . . . , <  cpx, cpn > ,

each of which contains cpx. As a consequence of lemma 6.1.3, cpt of each pair, 

<  cpx, cpi > , for 2 <L i < n, may be discarded, leaving only cpx. Therefore, a set of 

pairwise symmetric critical pairs encountered during the E-completion process it may 

be replaced by any single member of that set without affecting the results of the 

process. □

3. Symmetric Unifiers.

As shown in the previous section, symmetric critical pairs may be discarded 

without affecting the results of the E-complction procedure. However, creating 

critical pairs which are then thrown out is a waste of processing time: Unifiers must 

be generated and applied to form these unneeded critical pairs. A better approach is 

to search for symmetric redundancies and to remove them from the components from 

which the critical pairs are built before much processing effort has been expended.
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One of the components that can be examined for term symmetry is the unifier 

associated with each critical pair. We would like to show that discarding symmetric 

unifiers has no effect on the results of the E-completion procedure. In order to prove 

this, it must be shown that symmetric unifiers produce symmetric critical pairs.

Definition 6.5: Let 5  and s' be terms. Assume, without loss of generality, that 5 and 

s' are variable disjoint. Two unifiers, 0,, 02 e csu(s, s'), are symmetric unifiers, written 

as 0, s: 02, if there exists a variable renaming, o, such that 0? = 02, and, for all terms, t, 

to which 0, and 02 will be applied, t zz t and 0,(/) ~02(r).

The definition of symmetric unifiers is more complicated than those of 

symmetric critical pairs and symmetric terms. In fact, the final condition of the 

definition, that is, the requirement that for all terms t to which the unifiers will be 

applied 0,(/) =s 02(/), seems to be self-defeating: Checking this condition for a given 

value of a requires the application of 0, and 02 to a term, which is exactly the process 

that detecting and discarding symmetric unifiers is supposed to eliminate. However, 

there is a way to show that any variable renaming that meets the first two conditions 

of the definition will meet the third condition.

Lemma 6.2.1: Let s and s' be variable disjoint terms. If 0„ 02 e csu(s, s') such that

0\ = 02, and there exists a term, /, such that t ss /, then 0,(r) «  02(O- £ *
Proof: By definition, / s /  implies that r  = /. Since 0? = 02, it follows that

02(f) = 0f(r). If it can be proven that 0?(r) = (0i(O)*» then by transitivity,
e  r

02(f) = (0,(/))% which is the definition of 0,(/) s  02(/).

Assume that Ol = {x0*-s0, ... ,*„«-$,} and 0T = {*o *- sj, ... The

nodes of the tree representation of / each fall into one of three categories:

(1) operators, including constants,

(2) variables, jq, for 0 < / < w, and

(3) variables, jq, for i > n.
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Only categories (2) and (3) need to be examined, since operators are not affected by 

substitutions. In the tree for 0,(f):

(1) I f O</ < / 7 ,  then jc, is replaced by s,.

(2) If / >  n, then jc, remains the same.

So, in the tree for (O^t))0:

(1) if 0 < / <  n, then jc, is replaced by s".

(2) if / >  n, then jc, is replaced by jc".

In the tree for r:

(1) if 0 <  / <  w, then jc, is replaced by jc".

(2) if i >  «, then jc, is replaced by jc".

And, in the tree for d°x{t°):

(1) if 0 <  / < /?, then jc, is replaced by s°.

(2) if / >  w, then jc, is replaced by jc".

Thus, it can be seen that the tree representations o f (0i(/))" and #"(/") are the 

same, and so (0,(r))" = 0T(/*)- Therefore, if 0? = 02 and t = t, then 0,(r) =s 02(t). □
E E ° °

As will be shown in the proof of the following lemma, one result o f lemma 6.2.1 

is that the critical pairs produced by a pair of symmetric unifiers are also symmetric.

Lemma 6.2.2: Let Xx -► p, and X2 -> p2 be reductions. If 0,, 02 e csu( .̂,//, X2) such that 

0i «  02, then either 0, or 02 may be discarded without affecting the results o f the 

E-completion procedure.

Proof: If 0, s  02, then by the definition of symmetric unifiers 0f = 02, p, ss pM and
•  E •

Xx{.i *- p2]  «  +- p2] . (The latter two terms are those to which 0, and 02 are

applied to form critical pairs.) It then follows from lemma 6.2.1 that Sx{px) s  02(p,) 

and 0,(2,[/ <- p2]) s  02(Xx\_i <- p2]). Thus, the critical pairs, < 0,(pt), 0,(i,L**+-  p2 J) > 

and < 02(Pi), 02(^iC/«- p2])  >  , are also symmetric by a. By theorem 6.1, cither of 

these critical pairs may be safely discarded. Therefore, if 0,, 02 e csu(XJi, X2) and
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0j »  02, then either 0X or 02 may be discarded without affecting the results of the 

E-completion procedure. □

This result can be generalized to deal with sets of pairwise symmetric unifiers, 

just as lemma 6.1.3 was generalized to theorem 6.1.

Theorem 6.2: Let Xx -» p, and X2 —► p2 be reductions. A pairwise symmetric subset of 

csu(i,//, X2), for / e sdom(ij), encountered during the E-completion process may be 

replaced by any single member of that set without affecting the results of the process. 

Proof: The proof of this theorem proceeds like that of theorem 6.1. □

4. Symmetric Subterms.

Another component of the critical pair that can be examined for term symmetry 

is the subterm chosen from the left-hand side of a reduction.

Lemma 6.0.2 states that if s and t are terms and r = X —► p is a reduction, such 

that s * f t  and s -+ s 't then t -+ 1' such that s' s  /'. Since a is merely a variable 

renaming, it follows that there must exist an i e dom(s) and a y e  dom(r) such that 

(s/iy = t/j, s/i matches X by 0„ t/j matches X by 0Jt s' = s[z <— 0,{p)l, and

i' - iU - w :i.

Now consider the case of s «  5, such that (s/i)m ~  s/j and i #  y, for some 

/, j  e dom(s). If s/i matches X by 0, and s/j matches X by 0jf then is it true that 

s[, 4-  0,(p)] «  j[y 4-  0j(p)~\1 If s/i and s/j are rooted at different depths in the term 

tree of s, the two subterms cannot be considered symmetric. They are also not 

symmetric if they are sibling operands of a common non-commutative operator. If 

s/i and s/j are in distinct subtrees of s, then they can only be symmetric if the subtrees 

in which they appear are symmetric. Thus, the determination of symmetry is pushed 

upward in the tree to the level at which the two subtrees have a common parent
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node, and once again becomes a matter of determining the symmetry of sibling 

operands. This leads to a definition of symmetric subterms.

Definition 6.6: Let s be a term. Two subterms, s/i and s/j, are symmetric subterms o f  

s, written as s/i =s s/j, if there exists a variable renaming o such that (s/i)a = s/j, s s  s,
o E °

and s/i and s/j are sibling operands of a common commutative (C, AC, or ACI) 

operator.

This definition must be modified slightly to be used with subterms of the 

left-hand side of a reduction. I f  r = A -> p is a reduction, then two subterms A/i and 

A/j are symmetric by o if (A/i)° = A/j, r s r ,  and A/i and A/j are sibling operators of a
E *

common commutative operator. The reason that r zz r is required in place of A =: A is 

that we want to show that symmetric subterms of A produce symmetric critical pairs, 

but both A and p are used in forming critical pairs.

Lemma 6.3.1: Let Ax->px and A2 -* p2 be reductions. If A JissA Jj, such that 

i, j  e sdom(i,), then either AJi or AJj may be disregarded without affecting the results 

of the E-completion procedure.

Proof: Without loss of generality, assume that the two reductions are variable 

disjoint. Lemma 6.0.1 states that if A jissA J j, then

(V0,ecsu(AJi, A2)) (30j e csu(AJj, A2)) 0? = 0,. Without loss of generality, we shall 

assume such a 0, and its corresponding 0, in the remainder of the proof.

AJi and AJj produce critical pairs, < 0,(Pi), 0,{̂ iE/ «— p2]) > and 

c  0/pi), ej(Al\ j * - p J ) > ,  respectively. By the definition of symmetric subterms, 

A\ -> Pi »  At -> p, and, thus, px s  px. Since 0f = 0y, it follows from lemma 6.2.1 that 

e,(px) ss 0/pi). But in order for the critical pairs to be symmetric by a, it must also be 

true that 0,<>*,[/ <- p2]) j  0,(Ax\ j  <- p2]).
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By viewing a pair of symmetric terms as trees, it can be seen that replacing a 

symmetric subterm in each of the pair by a subterm that is also symmetric yields a 

new pair of symmetric terms. Since the two reductions are variable disjoint, and a is 

a variable renaming from vars(2,//) to \ars(AJj), it follows that p2 ^  p2. Thus, 

p2]=s Ax\j< - that is, (2 ,[/<-p2])° = pJ  and, consequently,9 E

O M ilj *- p j )  = ,[* «- p j) ') . So, if it can be proven that

iCi 4- p2»  = -  p j ) ) ' ,  then it must also be true that

0/^iD* <- P2~\) = W l '  Pil))', that is d , ( W  <- p2])* = B ^A jj <- p2]).

Assuming that r = >i|[/<— p2D makes this a proof of 0"(r) = (6i(t))af which was 

proven as part of the proof of lemma 6.2.1. Thus, 0t( i j [ /<— p2]) ~ QjA,[j <- p2]), and 

the critical pairs produced by AJi and AJj are symmetric. It follows from theorem 6 . 1  

that either of these symmetric critical pairs may be discarded without affecting the 

results of the E-completion procedure.

This result can be observed for each symmetric pair of unifiers from csu(AJi, A2) 

and esu(AJj, A2). Therefore, if AJi »  AJj, then either AJi or AJj may be disregarded 

without affecting the results of the E-completion procedure. □

This lemma can be generalized to handle sets of pairwise symmetric subterms, 

much as lemma 6.1.3 was generalized to theorem 6.1.

Theorem 6.3: Let Ax -» p, and A2 -* p2 be reductions. The processing of a set of 

pairwise symmetric subterms of Ax encountered during the E-completion process may 

be replaced by that of any single member of the set without affecting the results of 

the process.

Proof: The proof of this theorem proceeds like that of theorem 6.1. □
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D. TERM SYMMETRY ALGORITHMS

1. A Term Symmetry Decision Algorithm.

The algorithm developed in this section is a decision procedure for the symmetry 

of a pair of terms composed of commutative operators, null-E operators, constants, 

and variables. It can also be used to decide the symmetry of terms involving AC and 

ACI operators if those terms have been simplified to normal form, that is, the terms 

have been flattened and have had all identities removed through simplification.

The term symmetry decision algorithm is similar in concept to the tree 

isomorphism decision algorithm presented by Aho, Hopcroft, and Ullman [ .  

Their algorithm ignores all node labels in its operation. Unfortunately, this fact 

makes it inappropriate for use in deciding term symmetry, because for terms to be 

symmetric, constants must map onto identical constants and variables must map onto 

variables. An extension of the tree isomorphism decision algorithm is also suggested 

by Aho et al. to handle node labels. However, it, too, cannot be used to decide term 

symmetry, since the extension requires that variables map onto identical variables. In 

addition, neither of these algorithms consider the possible presence of null-E 

operators along with the commutative operators in the tree.

The pseudo-code for the term symmetry decision algorithm is contained in figure 

16. If Termx and Tern^ are symmetric terms, SYMMETRIC? returns a symmetry, o. 

Otherwise, it returns a value of FALSE. The actual implementation of this algorithm 

can be made more efficient by the application of constraints. For example, 

comparing the sizes of vars( Term,) and vars( before calling

BUILD-TERM-BAG could save unnecessary processing, since a difference in these 

sizes means that Termx and Term2 are definitely not symmetric.
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The terms input to SYMMETRIC? are passed successively into the function 

BUILD-TERM-BAG. This function constructs a bag, or multiset, of terms from its 

input parameter, Term. The term bag contains exactly one new term for each 

distinct variable, xlt in Term. This new term is a copy of Term in which all 

occurrences of jc, have been replaced by the constant c„ and all other variable 

occurrences have been replaced by the constant c2. These are new constants, that is, 

cx and c2 do not appear in Termx or T e r n input to function SYMMETRIC? 

Associated with each new term is jc„  the variable that was replaced by cx. (See 

statements (2) and (3) in the pseudo-code.) If Term is ground, that is, contains no 

variables, then the term bag returned is empty.

Once the term bags for Termx and Term2 have been constructed, they are 

compared to decide whether or not the two input terms are symmetric. If the term 

bags are both empty, that is, both Termx and Term2 are ground, then Termx and Term2 

are each sorted with respect to their commutative operators, that is, only the 

operands of commutative operators are sorted. Then the sorted terms are compared. 

If they are equal, then Termx and Terrr^ are symmetric by the identity symmetry, 

a = {}. If unequal, the two terms are not symmetric, and a value of FALSE is 

returned.

On the other hand, if either of the term bags is non-empty, then each term in 

both term bags is sorted with respect to commutativity, and then each term bag is 

sorted. If the two sorted term bags are equal, then there is a one-to-one, onto 

mapping from each term in TermBagx to an equivalent term in TermBag2. A term 

bag contains exactly one term for each variable in the term from which it was 

constructed, and each variable is associated with exactly one member of its term bag. 

Thus, the mapping from TermBagx to TermBag2 can, and is, used to construct a 

one-to-one, onto mapping from vars(7Vrm,) to y*rs{Term^. (See statement (6 ) in the 

pseudo-code.) This mapping is returned as a symmetry of Termx and Tern
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If the two sorted term bags are not equal, then Termx and Term, are not 

symmetric, and a value of FALSE is returned.

BUI LD-TERM-B AG(T erm); 
begin

Vars := the set of variables occurring in Term, { j c , ,  . . . ,  jc„ } ;  (1)
TermBag : = EmptyBag; 
for jc , e Vars begin

* { ^ 1  * ••• ♦ "*j-l * 2̂» ^  "̂ j+1 * *-2> * ^,), (2 )
TermBag := TermBag -I- <T,(Term):jc,; (3)

end;
retum(T ermBag); 

end;

SYMMETRIC?(Term,, Term2);
/* Term, and Term, are assumed to be in normal form. */ 
begin

TermBag,: = BUILD-TERM-BAG(Term,);
TermBag,: = BUILD-TERM-BAG(Term,); 
if (TermBag, is empty) and (TermBag, is empty) 
then /* Both Term, and Term, are ground terms. */

if COMM-SORT(Term,) = COMM-SORT(Term,) (4)
then retum({}) 
else retum(FALSE)

else /* Term,, Term,, or both terms contain variables. */
if SORT-BAG(TermBag,) = SORT-BAG(TermBag,) (5)
then begin

a: = EmptySet;
for ( /,:jc, e TermBag,) and (/,:y, e TermBag,)

a :=  aU{*i<-y,}; (6)retum(cr);
end
else retum(FALSE);

end;

Notes:
COM M-SORT(Term) recursively sorts the operands of the commutative 

operators of Term.
SORT-BAG( TermZtog) uses COMM-SORT to sort each term in TermBag, 

then sorts TermBag.

Figure 16. An algorithm to decide if two terms are symmetric.
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It can be seen in figure 16 that SYMMETRIC?(7erm„ 7>rm2) is an algorithm. 

There are a finite number of distinct variables in each of Termx and Term2, thus 

BUILD-TERM-BAG will halt for each. Also, since SYMMETRIC? contains no 

loops, it will halt. The correctness of the algorithm, however, is not as simply shown.

Theorem 6.4: The function SYMMETRIC?(Termu Term2) returns a symmetry, <r, iff 

Terml s  Ternij.

Proof that SYMMETRIC?(Termlt Term2) returns Termx ~ Term2: There are two * 1 2

cases for which SYMMETRIC? returns a symmetry a:

(1) TermBagx and TermBag2 are empty, and Termx = Tern

(2) TermBagx and TermBag2 are not empty, and TermBagx = TermBag2.

Case 1: A term bag created by BUILD-TERM-BAG contains exactly one term for

each distinct variable in vars( Term). Thus, TermBagx and TermBag2 can only be

empty if both Termx and Tern^ are ground terms. Consider that if a =  {}, then

Termt — a(Term,). Since Termx = T e r n it is a consequence of transitivity that
£  £

a(Termx) == Ternij. Therefore, Term, ~  Ternij.

Case 2: The following refers to the relationships illustrated in figure 17. Let 

*1* = {^,i. •••» 'I'™} be a set of one-to-one, onto mappings defined such that, for 

vars(7erm,) = {jc,, ... , jc„}, the mappings are \l/xx(Termx) = { j c , <— c,}(7erm,), ... , 

^J^Termx) = {jc„ «- c,}(7erm,), for some distinguished constant c,.

In a similar manner let co = {co,,, ..., câ } be a set of one-to-one, onto 

mappings defined such that, for y*rs{Term^ = {y„ ..., y„}, the mappings are 

coyl{Termx) = {y, c,}(7erm,), ..., (o^Term ,) = {yn <— c,}(7>rm,), for the same constant

c,. Thus, there is a set of inverse relations, co~l = {to;,1, ..., co^} that maps elements 

(j)yj(Term2) back onto Term2.
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If all other variables remaining in these terms are viewed as identical 

distinguished constants other than c„ then the effect of \ft and co on Term, and Ternij, 

respectively, is the same as that of the function BUILD-TERM-BAG. Since 

TermBagx and TermBag2 have the same number of elements, there exists a one-to-one, 

onto mapping, 17, from TermBagl to TermBagx

It can be seen that \f/ and a>~x preserve the structure of the terms to which they 

apply. In addition, since TermBagx =  TermBagx r\ is also a structure preserving 

mapping. So, we can define a set of structure preserving, one-to-one, onto mappings, 

°  =  {°ij I o.j =

from the variables of Termx to the variables of Termj, where 

(o-/oTio^xt(Termx) = w;}{jn{}lfJJermx)))

is the composition of functions a)-1, 17, and The set of mappings b is equivalent to 

the symmetry returned by the function SYMMETRIC?

If, however, TermBagx #  TermBag2, then >7 is not structure preserving, and no
E

structure preserving mapping b exists, so there is no symmetry from Termx to Tern 

Therefore, if SYMMETRIC? returns a symmetry, 0 , then Termx »  Terntj.

Proof that Term, 7  Termj SYMMETRIC?(Term,, T e r n returns o: By the 1 2

definition of term symmetry, if Term, «  Termj they must have the same number of 

variables. So, there are two cases to be considered:

( 1 ) Term, and Term2 are ground terms.

(2) Term, and Termj contain variables.

Case 1: Since Term, and Termj are ground terms, TermBagx and TermBag2, produced 

by BUILD-TERM-BAG, will be empty. In addition, Term, can only be symmetric to 

Termj by the symmetry 0  — {}. Since Term, == o(Termx) and o(Termx) = Termj, it is a 

consequence of transitivity that Term, = Term,. Therefore,

SYMETRIC?(Term,, Termj) returns a — {}.
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Case 2 (proof by contradiction): Since Termx and Term2 contain variables, both 

TermBagx and TermBagx produced by BUILD-TERM-BAG, will be non-empty. As 

stated earlier, Terml and Term2 must contain the same number of variables, so 

TermBagx contains the same number of terms as TermBag2. Assuming that 

SYMMETRIC? returns FALSE, it must be the case that 

(3/2 e  TermBag2) (V/, e  TermBagx) t2 =£ tx. It can be seen in the pseudo-code of
E

BUILD-TERM-BAG that

TermBagx = {oxx{Termx), ... , aln(Termx)} and 

TermBag2 = {o2X(Term2), ... , oJJerm 2)}t 

where, for all 1 < / < w, x t e vars(Termx), andy, e  vars(7emi2),

<*u = {xx *- c2, ... , c2, or, 4-  c„ jr(+1«- c2, ... , «- c2} and

a* = Oi *- c2, -  , y,-i «- c2, y, <- c„ y i+l 4-  c2, ... , yn *- c2}.

Since Termx is symmetric to Term2, there exists a variable renaming, 

o = { x x*-ylt ... , xn<— y„\, such that o(Termx) = Term2, and consequently 

° 2k°{Termx)) = a2l(Term2). Assume, without loss of generality, that Termx and Term2
E

are variable disjoint. Then by the definition of the composition of substitutions,

(VI < / < n) o2i(a(Termx)) = o2ioo(Termx),
E

where

<*2i°° = {*i«“ c2t... , jc,_, ♦- c2, ♦- c„ jt(+1, 4-  c2, ... , 4-  c2]

U  lVi c2, ... ,y,_, <- c2,y, *- clfyM, 4-  c2, ... ,yn 4-  c2).

Since Termx and Term2 are variable disjoint, it is clear that the application of o2i<>o to 

Termx as described, above, will have the same affect as the application of oXi to Termx, 

that is,

(VI < i < n) o2l°o(Termx) = au(Termx).

Thus, as a consequence of transitivity,

(VI <, i < n) o^T erm J = au{Termx).

This means that (V/ 2 e TermBag^ (3/, e TermBag^) t2 = tX9 which implies that 

TermBagx = TermBag2 and, consequently, that the function SYMMETRIC? returns



www.manaraa.com

96

<t  =  { j c x<-yx, . . . ,  jc„ <-yn}. This is a contradiction of the assumption that

SYMMETRIC? returns FALSE. Therefore if Termx szTerm^ then

SYMMETRIC?(7>rm„ TermJ returns a symmetry a. □

The steps in this algorithm which comprise most of the processing time have 

been labelled in figure 16. A worst-case time complexity analysis on each of these 

steps reveals the following, in which n is assumed to be the maximum of the number 

of nodes in either the term tree for Terml or the term tree for Term

(1) find all variables in Term—0{n),

(2 ) for each distinct variable, build a substitution—0 (/i),

(3) for each distinct variable, build a new term—(X^2).

(4) sort Termx and Termj at all levels—(X/Hlog /i),

(5 ) sort and compare the term bags at all levels—CX^log n) -I- CK*2), and

(6 ) build the symmetry to be returned—O^)-

Thus, the worst-case time complexity for this algorithm is 0(/f2log n).
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The worst-case space complexity for SYMMETRY? is 0(«2), since there are, at 

most, n copies of a term made for each of the n nodes in the term.

2. An Algorithm for Finding Asymmetric Subterms (Strict Domains).

Figure 18 contains the pseudo-code for an algorithm to prune the strict domain 

(sdom) of a term down to an asymmetric strict domain (asdom). This is an extension 

of the basic term symmetry decision algorithm. The function BU1LD-TERM-BAG2 

produces a bag of extended terms. Each term is concatenated with the term 

associated with the same variable contained in the term bag constructed for the 

parent term. The concatenated terms for one subterm will equal the concatenated 

terms for another only if the variables associated with the concatenated terms are 

symmetric with respect to both the subterm and the parent term. The function 

ASYMM-SUBTERMS is the recursive part of this algorithm. When a term is input 

as an argument into ASYMM-SUBTERMS, its position within the top level term is 

also provided. At the top level, this position is e, which is subsequently appended to 

at each level of recursion. (See statement (1).) Note that an altered version of the 

procedure MAKE-CRITICAL-PAIRS, which was described in chapter 4, is also 

included.
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BUILD-TERM-BAG2(Term, SuperBag); 
begin

Vars := the set of variables occurring in Term, {jc,, ..., jc„};
TermBag := Empty Bag; 
for jc, e Vars begin

<T, . {jT, 4 C2, ... , Jf,_, 4 C2, Jf, 4 C,, 4 c2, ••• > * C2},
NewTerm, := <7,(Term);
NewTerm2 := the term from SuperBag that corresponds to jc , 

or if no such term exists, EmptyTerm;
TermBag : =

TermBag + CONCAT(COMM-SORT(NewTcrm,), NewTerm,);
end;
retum(TermBag);

end;

ASDOM(Term);
begin

TermBag := SORT-BAG(BUILD-TERM-BAG(Term)); 
retum(ASYM M-SUBTERMS(Term, TermBag, c); (1)

end;

MAKE-CRITICAL-PAIRS(Pairs, Eqs); 
begin

{ î Pi* X2 -* p2} := the member of Pairs with the smallest value of 
weight^,) + weighty,);

Pairs := Pairs — {>1, —► p„ X2-+ p2}\
Eqs : = {<a(p,), oU>2) > | a e  csu(^„ 22)}

U { <  <*(Pi), <*(Xx\_i P2]) > I 2, p, is not an extension (2)
a i e  AlSDOM^,) a a e csu(AJi, i 2)}

U { <  tf(Pa)» o(X2\_i 4-  p,]) > | X2 -*■ p2 is not an extension (3)
a i e ASDOM(i2) a a e csu(XJi, ,̂)};

end;

Notes:
BUILD-TERM-BAG(Term) is as described in figure 16.
COM M-SORT( Term) recursively sorts the operands of the commutative 

operators of Term.
CONCAT(7erm„ Term,) forms an ordered pair of Termx and Tern 
SORT-BAG(TermBag) uses COMM-SORT to sort each term in TermBag, 

then sorts TermBag.

Figure 18a. Algorithm to calculate the asymmetric strict domain of a term, part 1 of
2.
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ASYMM-SUBTERMS(Term, SuperBag, TermPos); 
begin

Asdom : = EmptySet; 
if Term.root e Fc, FAC, or FACl 
then begin

SubtermBags : = EmptySet;
for / e {positions of top level operands of Term} begin 

tb := BUILD-TERM-BAG2(Term, SuperBag); 
if tb £ SubtermBags 
then begin

Asdom := Asdom U {TermPos./};
SubtermBags : = SubtermBags (J {tb}\ 

end;
end;
SubAsdom : = EmptySet;
for TermPos./ e Asdom 

SubAsdom : = SubAsdom
U ASYMM-SUBTERMS(Term//', SuperBag, TermPos./);

end;
else begin

SubAsdom : = EmptySet;
for / e {positions of top level operands of Term} begin 

Asdom := Asdom U {TermPos./};
SubAsdom : = SubAsdom

(J ASYMM-SUBTERMS(Term//, SuperBag, TermPos./);
end;

end;
retum(Asdom(JSubAsdom);

end;

Figure 18b. Algorithm to calculate the asymmetric strict domain of a term, part 2 of
2.

3. An Algorithm for Finding Asymmetric Unifiers.

Figure 19 contains the pseudo-code for an algorithm to prune a complete set of 

unifiers (csu) to an asymmetric complete set of unifiers (acsu). This is an extension of 

the basic term symmetry decision algorithm. The function BU1LD-TERM-BAG3 

treats each unifier as a commutative term, and each substitution pair within the 

unifier as a null-E subterm. It produces a bag of extended terms. Each term is 

concatenated with the terms associated with the same variable that are contained in 

the term bags for the two terms of the critical pair to which the unifier would be
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applied. The concatenated terms for one unifier will equal the concatenated terms for 

another only if the variables associated with the concatenated terms are symmetric, 

with respect to the unifier and with respect to each of the two terms to which the 

unifiers would be applied.
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BUILD-TERM-BAG3(Unifier, SuperBagl, SuperBag2); 
begin

TermBag := Empty Bag; 
for v e vars(Unifier) begin

NewU := a copy of Unifier in which all occurrences of v have 
been replaced by c, and all other variable occurrences have been 
replaced by c2;

NewTerm, :=  the term from SuperBag, that corresponds to v, 
or if no such term exists, EmptyTerm;

NewTerm2 := the term from SuperBag2 that corresponds to v, 
or if no such term exists, EmptyTerm;

NewTerm,^  : = CONCAT(NewTerm,, NcwTcrm2);
TermBag : = TermBag + CONCAT(COMM-SORT(NewU), NewTerm,*,); 

end;
retum(T ermBag); 

end;

ACSU(Csu, Term,, Term2); 
begin

TermBag sub 1 :=  SORT-BAG(BUlLD-TERM-BAG(Term sub 1 )); 
TermBag sub 2 :=  SORT-BAG(BUILD-TERM-BAG(Term sub 1 )); 
UnifierBags := EmptySet; 
for 0 eCsu begin;

ub := BUILD-TERM-BAG(0, TermBag,, TermBag2); 
if ub$ UnifierBags 
then begin

Acsu := Acsu U {0};
UnifierBags := UnifierBags (J {ub}; 

end; 
end;
retum(Acsu);

end;

Notes:
BU1 LD-TERM-BAG(Term) is as described in figure 16.
COM M-SORT(Term) recursively sorts the operands of the commutative 

operators of Term.
CONCAT(7erm„ Term2) forms an ordered pair of Termx and Termj. 
SORT-BAG( TermBag) uses COMM-SORT to sort each term in TermBag, 

then sorts TermBag.

Figure 19. An algorithm to calculate asymmetric complete sets of unifiers for 
E-completion.
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VII. RESULTS

A. HARDWARE AND SOFTWARE ISSUES

This research was done as a part of a larger project funded, in part, by the 

McDonnell-Douglas Corporation of Saint Louis, Missouri to investigate the 

application of automated theorem proving tools to avionics diagnosis. The software 

developed for the project is implemented in Common Lisp. The decision to use 

Common Lisp instead of a block structured language, such as C, was motivated by 

two factors: the desire for a quick development phase, and the need for portability 

between a variety of very different hardware configurations. The implicit list 

processing and interactive debugging capabilities of Common Lisp made it an ideal 

choice for the former, and its high level of functional modularity made it easy to 

change the software to reflect changes in the developing theories. The programs have 

been successfully run on a Micro-Vax II under the VMS operating system, an 

IBM/PC-RT under the AIX operating system (an implementation of AT&T System V 

Unix), a Xerox 1108 Lisp workstation, and a Symbolics 3600 Lisp workstation. No 

source code changes were necessary to run the software on these diverse machines 

and operating systems.

The results contained in this chapter were achieved using an IBM/PC-RT. It 

consistently executed the test runs faster than the other three machines.



www.manaraa.com

103

B. WEIGHTING FUNCTION

The development of an appropriate weighting function seems to be more of an 

art than a science. If an execution of the E-completion procedure fails because of the 

weighting function, the weighting function is modified and the procedure is executed 

again. None of the authors cited in this paper explained how they derived their 

weighting functions.

The weighting function used for these tests is described as follows:

weight(c<?/7.sta/?/) 

weight (variable) 

weight( +  (x, y)) 

weight( -  (x)) 

weight( x (jc, y)) 

weight(/(.r, y)) 

weight(/(x)) 

weight(#(c<?rts/a«f)) 

yveight(g(variable)) 

w eigh t^*))

2

2

weight(jc) + weight(y) -I- 5 

2* weight ( j c )  4- 2 

weight(jc)weight(y) 

weight(jc) + weighty) 4-5 

2*weight(x) 4- 2 

3 

3

weight(x) 4- 5

C. TEST CASES

Test runs were made for four cases: an abelian group, a commutative ring with 

identity, a group homomorphism, and a distributive lattice with identity. Two groups 

of test runs were made for each case: one using AC unification and another using 

ACI unification. There were six test runs in each group, based on different 

combinations of the levels of term symmetry removed from processing: 

level 1 —symmetric reductions, 

levels 1 and 2 —symmetric reductions and subterms,
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levels 1 and 3—symmetric reductions and unifiers, 

levels 1 and 4—symmetric reductions and critical pairs, 

levels 1, 2, and 3, and 

levels 1, 2, 3, and 4.

The removal of symmetric critical pairs was included in every test since, as discussed 

in chapter 6 , it is an integral part of the standard Peterson-Stickel E-completion 

procedure.

Tables VI through IX contains the statistics for the test runs. The critical pairs 

column of each table reflects the number of critical pairs generated during each test 

run. Similarly, the reductions added column indicates the number of reductions added 

to the set of reductions during execution of the E-completion procedure. However, 

not all of those reductions are necessarily in the complete set, since reductions may be 

simplified and removed from the set. Terminal form  times is the time, in seconds, 

taken to reduce all of the critical pairs to terminal form. This value docs not include 

the time taken to remove term symmetries. The total run time is in seconds. Relative 

time is the ratio of the total run time of a test to the total run time of the level 1 test 

of the same test group. The level 1 test represents a "control" test, since it is merely 

the standard Peterson-Stickel E-completion procedure.

1. Abelian Group.

An abelian group < A, + > is an algebraic system in which the binary operator 

+ on A satisfy the conditions:

(1) (Vx, y, z e A) + (x, + (y, z)) = + ( -I- (x, y), z),

(2) (Vx, y e  A) + (x, y) = + (y, x),

(3) (3e e A) (Vx e A) + (x, e) = 4 - (e, x) = x, and

(associativity)

(commutativity)

(identity)

(4) (Vx e A) (3 — (x) e A) + ( — (x), x) =  4 - (x, — (x)) = e. (inverse)
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Our E-completion procedure was used to generate a complete set of reductions for 

the abelian group described above, assuming an identity element, 0. Two sets of test 

runs were made: one assuming + to be an AC operator, and another assuming it to 

be an ACI operator. The statistics for both sets of runs are in table VI. The input 

Equations, S, input reductions, R, and the complete set of reductions produced for 

the AC and ACI cases are as follows:

Assuming + to be an AC operator: 

Input:

S: + (*. ~ W )  = ° inverse law

+ ( x ,  0 )  = j c identity law

R: empty

Output:

R,: + ( j c ,  0 )  -* ■  j c

R2: + (x, -  0 ), y ) - * *

R3: T ( j c , —  C * ) )  —► 0

R«: - ( 0 ) - > 0

Rs: - ( - ( J C ) ) - > J C

-  (+  (x > y)) -* + ( -  W . -  0 ))
Assuming + to be an ACI operator:

Input:

S: + {x, -  ( x ) )  =  0 inverse law

R: empty

Output:

R,: —  (  —  ( j c ) )  —  or

-  ( +  (*, >))-► +  ( -  M . -  O'))

R„: + (jc, 0 ) -» jc
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Table VI. STATISTICS FOR ABELIAN GROUP.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal 
Form Time

Total 
Run Time

Relative
Time

AC 1 123 8 37.0 68.7 1 . 0 0
1 , 2 123 8 40.2 67.0 0.97
1,3 119 8 40.8 71.9 1.05
1,4 89 8 26.1 55.1 0.80
1,2,3 119 8 39.4 71.5 1.03
1 ,2 ,3,4 8 8 8 2 2 . 2 59.1 0 . 8 6

ACI 1 37 1 0 40.7 62.9 1 . 0 0
1 , 2 36 1 0 44.9 61.8 0.98
1,3 37 1 0 48.1 65.6 1.04
1,4 33 1 0 35.2 55.0 0.87
1,2,3 36 1 0 39.8 64.5 1.03
1 ,2 ,3,4 32 1 0 43.6 61.5 0.98
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2. Commutative Ring with Identity .

A commutative ring with identity < A, +, x > is an algebraic system in which 

the binary operators + and x on A satisfy the conditions:

( 1 ) < A, + > is an abelian group with an identity el and inverse operator —,

(2) (Vx, y , z e A) x (x, x (y, z)) = x ( x (x, y), z), (associativity of x  )

(3) (Vx, y  e A) x (x, y) = x (y, x), (commutativity of x )

(4) (3e2 e A) (Vx e A) x (x, e2) = x (e2, x) = x, and (identity of x )

(5) (Vx, y, z e A) x (x, + (y, z)) = + ( x (x, y), x (x, z)). (distributivity)

Our E-completion procedure was used to generate a complete set of reductions for 

the commutative ring with identity described above, assuming the identity elements, 0  

and 1, for operators, + and x , respectively. Two sets of test runs were made: one 

assuming + and x to be AC operators, and another assuming them to be ACI 

operators. The statistics for both runs are in table VII. The input Equations, S, 

input reductions, R, and the complete set of reductions produced for the AC and ACI 

cases are as follows:

Assuming + and x to be AC operators:

Input:

S: x (x, + (y, z)) = + ( x (x, y), x (x, z)) distributive law

x (x, 0) = x identity law

R: -  ( + (x, .y)) -> + ( -  (x), - 0 ) )

-  ( ~ (x)) -> x 

- ( 0 ) - 0  

+ (x, - ( x ) ) - » 0  

+ (x, y , ~ (y))~> x  

+ (x, 0 ) -> x 

Output:

R,: -  ( 4- (x, y)) -+ + ( -  (x), -  (y))
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R2: W )  -  J f

R,: - ( 0 ) - ► 0

R , : - 1-  t o -  W )  - 0

R 5 : +  ( x , y .  - i y ) ) — > X

R . : +  ( x , 0 )  — *  jc

R,: x  ( a t , 1 ) - J C

R,: x  ( a t , +  O ' ,  z)) -+ +  (  x  (at, . y ) ,  x  (at, z ))

R 35: x  ( a t , 0 ) - * 0

R « : X ( - t o ,  y) -* -  (  X  ( a t ,  . y ) )

Assuming + and x to be ACI operators:

Input:

S: x (x, + (y, z)) = + ( x (jc, y), x (jc, z)) distributive law

R: + (x, y , -(y ))-> x  

-  ( ~  (*)) *
if (x #  0 )a(v =£ 0 ) then -  (+  (x, y)) -> + ( -  (at), -  (y))

Output:

R^ - ( - t o ) - * *
R3: if ((x #  0)) a(0  #  0)) then -  ( + (x, y)) -* + ( -  (at), -  (y))

R^ if (y #  0 )a(z #  0 ) then x (at, + (y, z)) -» + ( x (at, y ), x (at, z))

R,: if (jc #  1) then x ( jc, 0) -> 0

Ri«: if (V ^  1) then x ( -  (at), y) -► -  ( x (at, j ;))

Ri7: + (x, y , - ( y ) ) -+ x
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Table VII. STATISTICS FOR COMMUTATIVE RING WITH IDENTITY.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal 
Form Time

Total 
Run Time

Relative
Time

AC 1 551 46 1370.3 1811.8 1 . 0 0

1 , 2 547 46 1364.7 1800.5 0.99
1,3 541 46 1355.3 1810.9 1 . 0 0

1,4 480 46 1097.7 1546.4 0.85
1,2,3 537 46 1333.2 1790.6 0.99
1 ,2 ,3,4 477 46 1097.5 1552.7 0 . 8 6

ACI 1 234 17 1697.4 2360.0 1 . 0 0

1 , 2 229 16 1497.2 2111.9 0.89
1,3 199 17 1446.0 2337.2 0.99
1,4 138 18 1471.7 2131.9 0.90
1,2,3 194 16 1275.0 2092.8 0.89
1 ,2 ,3,4 138 17 1130.6 1932.1 0.82

3. Group Homomorphism.

A group homomorphism, g , between two groups, < A, + > and < B, / > , is an 

algebraic system that satisfies the following conditions:

( 1 ) < A f + >  is a group,

(2) < B, I > is a group, and

(3) (Vx, y  e A) g( +  (x, y)) = /(g(x), g(y)). (homomorphism)

Our E-completion procedure was used to generate a complete set of reductions for 

the group homomorphism described above, assuming identity elements 0  and e, and 

inverse operators — and i for -I- and /, respectively. Two sets of test runs were made: 

one assuming + and / to be AC operators, and another assuming them to be ACI 

operators. The statistics for both runs are in table VIII. The input Equations, S,
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input reductions, R, and the complete set of reductions produced for the AC and ACI 

cases are as follows:

Assuming + and / to be AC operators:

Input:

S: g( + (*, y)) = l(g(x), s(y))

R: -  ( + (*, y)) -> + ( -  W, -  0))

- ( 0 ) - 0  

+ (*. - W ) - > 0

+ (x > y> - i y ) ) - > x

+ (jf, 0 ) -*■ x

iU(x > y)) -* l(K*)> Hy))

<('(*)) x  

i(e) -* e 

/(jf, /(*)) -* e

l(x, y> & )) - * x

/(X, e ) ->x  

Output:

R,: -  ( + (jr, jO) -» + ( -  (x), -  O'))

-(-(•*))-►■*
R3: -  (0 ) -  0

R,: + (x, - ( x ) ) - 0

R5: + (x, y , -  O')) x  

R*: + (*. 0 ) - x  

R : i(l(x, J')) -» /('(*), /'O'))

R,: -* x

R,: i(e) -+ e

homomorphism
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R10:/(jr, i(x))->e

Rn: /(*. y, /(v)) -* X

Rt2: l{x, e)-* x

R,v g{ + (x, y)) -  l ( g ( x ) , g ( y ) )

R » :  ^ ( 0 )  - +  e

R»: £( -  W) -* ‘(g(x))

Assuming + and / to be ACI operators:

Input:

S: g( + (x , y)) = /feto , g{y)) homomorphism

R: + to  y, -  0)) -* x

-  ( -  to ) -► *

i f  ( x  #  0 ) a ( v  #  0 )  t h e n  -  (  +  ( j t ,  y ) )  - ♦  +  (  -  t o ,  -  0 ) )/to y> 'O')) “♦ x
'('to) x

if  (x #  e)A(v =£ e) then /(/to  ^)) /('to , 'O'))

Output:

R ,: +  (x , y , — O ')) —* x

R 2:

R 5: if (jc #  0 ) a(j/ #  0 ) then -  ( +  to  y ) )  - > +  ( -  to , -

R .: /(■*. J'. '0 ) )  - »  -r

R : KKx)) -*  x

R .: if ( jc ^  e)/<(y #  e) then ' (/ t o  y)) -+ / ( 't o ,  'O '))

R ,: if (jc #  0)a (v #  0 ) then g( +  t o  >0) -+  /teto), giy))

Rio-

t0'S

Ri»: g( -  to ) ->  't o t o )
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Table VIII. STATISTICS FOR GROUP HOMOMORPHISM.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal 
Form Time

Total 
Run Time

Relative
Time

AC 1 8 8 25 1 1 0 . 0 183.4 1 . 0 0

1 , 2 8 8 25 110.3 184.6 1 . 0 1

1,3 87 25 104.4 187.4 1 . 0 2

1,4 70 23 82.2 144.2 0.79
1,2,3 87 25 105.3 186.4 1 . 0 2
1 ,2 ,3,4 70 23 79.9 148.2 0.81

ACI 1 36 16 67.7 124.9 1 . 0 0

1 , 2 33 16 75.1 123.1 0.99
1,3 36 16 76.4 133.4 1.07
1,4 29 18 75.6 141.3 1.13
1,2,3 33 16 65.5 129.0 1.03
1 ,2 ,3,4 28 17 76.4 136.0 1.09

4. Distributive Lattice with Identity.

A distributive lattice with identity, < A, +, x > , is an algebraic system that 

satisfies the following conditions:

(1) 4- is associative and commutative, and has an identity elt

(2 ) x is associative and commutative, and has an identity e2,

(3) (Vjc, y  e A) 4 - (jr, x (jc, .y)) = jc, (absorption for 4-)

(4) (Vjc, y  e A) x (jc, 4 - (jc, .y)) = jc, and (absorption for x )

(5) (Vjc, y, z e A) x  (x , 4- (y, z)) =  4- ( x (.x , y), x (jc, z)). (distributivity)

Our E-completion procedure was used to generate a complete set o f reductions for 

the distributive lattice with identity described above, assuming identity elements 0  and 

1 for 4- and x , respectively. Two sets of test runs were made: one assuming 4- and 

x to be AC operators, and another assuming them to be ACI operators. The
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statistics for both runs are in table IX. The input Equations, S, input reductions, R, 

and the complete set of reductions produced for the AC and ACI cases are as follows:

Assuming + and x to be AC operators:

Input:

S: + (x, x (x, y)) = x 

x (x, + (x, j>)) =

x (•*» + 0 , z)) = + ( x (x, y), x (x, z)) 

x (x, 1 ) =  x

+ (x, 0 ) =  x

R: empty 

Output:

R,: x (x, 1) —► x 

R2: + ( x ,  0) —► x 

R3: + (x, x O, z), y) -► + (x, y)

R*: x (x, + (x, >0) *

R7: x (x, + (y, z)) -> + ( x (x, y), x (x, z))

&i2- + (x, y , y) -> + (x , y)

R13: + (x, x) -► x 

R14: + (x, 1) -  1 

RIS: x (x, 0 ) -► 0  

Ri«: x (x, y , y) -► x (x, y)

R,7: x (x, x) -> x

absorption

absorption

distributivity

identity

identity
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Assuming + and x to be ACI operators: 

Input:

S: + (*, x (x, y)) = or 

x (.x , -I- (x, y)) = x

x (•*, +  0 , z)) =  +  ( x (x, y \  x (jt, z)) 

R: empty 

Output:

R,: if (y #  0)v(z =£ 1) then + (x, x (y, z), 

R,: x (jc, 1) —> x

absorption

absorption

distributivity

+ c*. y)

R3: if (jr ^  1)a(v #  0)a(z #  0) then x (jr, + (y, z)) -> 4 - ( x (jr, x (jr, z)) 

Rs: if (y #  1 ) then x (*, y , y) x (x, y)

Table IX. STATISTICS FOR DISTRIBUTIVE LATTICE WITH IDENTITY.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal 
Form Time

Total 
Run Time

Relative
Time

AC 1 339 17 398.2 515.1 1 . 0 0

1 , 2 339 17 401.4 513.5 1 . 0 0

1,3 325 17 388.0 519.2 1 . 0 1

1,4 251 17 276.7 413.2 0.80
1,2,3 325 17 376.2 513.6 1 . 0 0
1 ,2 ,3,4 244 17 282.4 428.0 0.83

ACI 1 425 5 910.0 1054.8 1 . 0 0

1 , 2 425 5 905.9 1057.5 1 . 0 0

1,3 279 5 888.3 1087.5 1.03
1,4 165 5 690.3 8 8 6 . 6 0.84
1,2,3 279 5 894.0 1097.9 1.04
1 ,2 ,3,4 165 5 714.6 932.0 0 . 8 8
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D. OBSERVATIONS

1. AC Test Results.

The results of the AC test groups for the abelian group, commutative ring with 

identity, group homomorphism, and distributive lattice with identity are similar. In 

each case, removing symmetric subterms and/or symmetric unifiers (levels 1 and 2 , 

levels 1 and 3, and levels 1, 2, and 3) did not have a great impact on the number of 

critical pairs produced; that is, there were not many symmetric subterms or unifiers 

found. The total run times of these three tests are almost identical to that of the 

standard E-completion procedure. Thus, the run time saved by removing these 

symmetric redundancies was evidently consumed by the process of checking every 

subterm and/or unifier for symmetry.

The removal of symmetric critical pairs (levels 1 and 4, and levels 1, 2, 3, and 4) 

was, however, a different matter. The elimination of this type of term symmetry 

resulted in a significant reduction in the number of critical pairs (13% to 28%) and a 

corresponding reduction in the total run time (12% to 21%). The tests in which all 

four types of term symmetry were eliminated resulted in the same or fewer critical 

pairs retained than did the removal of just symmetric reductions and critical pairs, but 

once again, the overhead of removing symmetric subterms and unifiers destroyed any 

potential savings in total run time.

2. ACI test results.

The results of the ACI test groups for the abelian group, commutative ring with 

identity, group homomorphism, and distributive lattice with identity are not as 

consistent as those observed for the AC test groups. In general, however, we do see 

that a large reduction in the number of critical pairs resulted in a drop in the total
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run time. Two notable exceptions are the tests of the removal of symmetric critical 

pairs (levels 1 and 4) for the abelian group and group homomorphism. In fact, the 

total run time actually took a large jump upwards in the case of the group 

homomorphism. We believe that this is due to a relatively minor drop in the number 

of critical pairs (that is, minor with respect to the number of critical pairs removed, 

not the proportion of critical pairs removed), accompanied by an increase in the 

number of reductions added during processing. This would result in an increase in 

the amount of time taken to perform the inter-reduction simplification process.

The increase in reductions added comes about as a result of the pruning of the 

list of critical pairs processed. When a critical pair near the front of the list is 

symmetric to one near the end of the list, and the former would have produced a 

reduction, that reduction will now be produced near the end of processing. This 

means that the intermediate critical pairs that would have been conflated by the new 

reduction may now not conflate, and will be added as critical pairs, only to be 

removed when the latter critical pair is processed.
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V III. C O N C L U S IO N S

A. SUMMARY

In chapter 1 , it was stated that the goal of this research was to develop a 

method of significantly reducing the processing needed to complete an incomplete set 

of reductions. We have been modestly successful in reaching this goal.

We presented the concept of term symmetry, and developed the accompanying 

theory to show that symmetric syntactic structures encountered in the E-completion 

process, including symmetric E-unifiers, represent redundant information and can be 

discarded without altering the results that are returned by the procedure. Using the 

theory of term symmetry as a foundation, a term symmetry decision algorithm was 

developed. Its correctness and termination were proven, and an analysis was made of 

its worst-case time and space complexities.

This basic algorithm was extended to algorithms for deciding the symmetry of 

subterms and deciding the symmetry of unifiers. All algorithms were implemented in 

Common Lisp and used in conjunction with our implementation of the E-completion 

procedure. E-completion tests were run for four examples using various 

combinations of the symmetry removal algorithms, first utilizing our AC unification 

algorithm, then our ACI unification algorithm.

The savings in processing time resulting from the removal of term symmetries 

were not as significant as we had hoped for. We had expected a sizable percentage of 

unifiers to be symmetric, but this was not so. In fact, the removal of symmetric 

unifiers or symmetric subterms generally resulted in a slower run time than with the 

symmetries left intact. The best method, in general, turned out to be the removal of 

symmetric critical pairs after their formation. The development of a more efficient 

term symmetry decision algorithm would improve the performance of each of the
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symmetry removal algorithms. Another possibility would be the removal of 

symmetric critical pairs in conjunction with some other search space pruning 

technique.

B. TOPICS FOR FUTURE RESEARCH

In performing this research and preparing this paper, several questions surfaced 

that we believe to be interesting and relevant. Some of these are:

(1) Since there exists an algorithm to decide tree isomorphism in linear time

\_AH1A] , we believe that our term symmetry decision algorithm, which has 

a time complexity of O ^log  w), can be greatly improved upon. The 

problem of deciding term symmetry is merely an instance of the tree 

isomorphism problem. Since the term symmetry decision algorithm is used 

as the basis for the symmetry removal algorithms, this would also improve 

their efficiencies.

(2) It would be interesting to combine, in one E-completion procedure, our term

symmetry pruning techniques and the unblocked unifier method described 

by Kapur, Musser, and Narendran [^ A /8 6 ]. We have implemented their 

method separately and obtained favorable results in the reduction of run 

times. Since their technique operates on unifiers, and ours performs best on 

critical pairs, a combination of the two could lead to better results than 

either, individually.

(3) Another area to which the idea of pruning term symmetries might be

beneficial is that of resolution-based proof systems. Permitting such 

systems to use clauses involving non-empty equational theories increases 

their power. If symmetric clauses, literals, and E-unificrs represent 

redundant information in these systems, then removing the symmetries 

should decrease the size and complexity of the search space involved.
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(4) The development of an asymmetric, complete AC/ACI unification algorithm 

is desirable. The method that we use to remove unifier symmetries is to 

generate a complete set of unifiers, and then discard those that are 

symmetric. This is an extremely wasteful process. It would be much better 

to generate the asymmetric, complete set of AC/ACI-unifiers directly. 

However, we believe this to be a difficult goal, since it is similar to the 

generation of minimal, complete sets of AC/ACI-unifiers. We have not 

seen an algorithm that can directly produce a minimal, complete set of 

AC/ACI-unifiers for general AC/ACI terms. But, if an asymmetric, 

complete AC/ACI-unification algorithm can be developed, it may be 

possible to extend the asymmetric, complete set of unifiers to a minimal, 

complete set of unifiers.
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