
www.manaraa.com

Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Summer 1988

The role of term symmetry in E-unification and E-completion The role of term symmetry in E-unification and E-completion

Blayne E. Mayfield

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Mayfield, Blayne E., "The role of term symmetry in E-unification and E-completion" (1988). Doctoral
Dissertations. 692.
https://scholarsmine.mst.edu/doctoral_dissertations/692

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/692?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

www.manaraa.com

THE ROLE OF TERM SYMMETRY IN

E-UNIFICATION AND E-COMPLETION

BY

BLAYNE E. MAYFIELD, 1957-

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

in T5740
Copy 1
133 pages

Advisor

1988

Co-Advisor

www.manaraa.com

11

ABSTRACT

A major portion of the work and time involved in completing an incomplete set

of reductions using an E-completion procedure such as the one described by Knuth

and Bendix _KB10] or its extension to associative-commutative equational theories

as described by Peterson and Stickel [PS81] is spent calculating critical pairs and

subsequently testing them for coherence. A pruning technique which removes from

consideration those critical pairs that represent redundant or superfluous information,

either before, during, or after their calculation, can therefore make a marked

difference in the run time and efficiency of an E-completion procedure to which it is

applied.

The exploitation of term symmetry is one such pruning technique. The

calculation of redundant critical pairs can be avoided by detecting the term

symmetries that can occur between the subterms of the left-hand side of the major

reduction being used, and later between the unifiers of these subterms with the

left-hand side of the minor reduction. After calculation, and even after reduction to

normal form, the observation of term symmetries can lead to significant savings.

The results in this paper were achieved through the development and use of a

flexible E-unification algorithm which is currently written to process pairs of terms

which may contain any combination of Null-H, C (Commutative), AC

(Associative-Commutative) and ACI (Associative-Commutative with Identity)

operators. One characteristic of this E-unification algorithm that we have not

observed in any other to date is the ability to process a pair of terms which have

different ACI top-level operators. In addition, the algorithm is a modular design

which is a variation of the Yelick model [Ye85], and is easily extended to process

terms containing operators of additional equational theories by simply "plugging in" a

unification module for the new theory.

www.manaraa.com

m

ACKNOWLEDGEMENTS

This work is dedicated to the memory of Woodrow Claxton, a good friend who

encouraged my interest in mathematics.

I would like to thank Dr. Ralph W. Wilkerson for his assistance as my advisor.

I would also like to thank the other members of my committee, Dr. Arlan R.

DeKock, Dr. Billy E. Gillett, Dr. W. Van Stoecker, M. D., Dr. Selden Y. Trimble,

and Dr. George W. Zobrist. Special thanks go to Dr. Gerald R. Peterson of

McDonnell-Douglas Corporation in Saint Louis, Missouri, for suggesting the topic of

this research.

I would like to thank the American Academy of Dermatology and the

McDonnell-Douglas corporation for their financial support.

This research was done as part of a larger project. The other people involved in

the project were Dr. Tim Baird, Barbara Smith, and Dr. Ralph Wilkerson. I thank

them for their work on the software, and for their willingness to set aside their own

work to talk with me.

I would like to thank my parents for their love and for their encouragement

during those early college years.

And finally, I would like to thank my wife, Annctta, and my sons, Marcus and

Brandon, for their love and encouragement during the latter college years. Without

them, this work would not have been completed.

www.manaraa.com

IV

TABLE OF CONTENTS

Page

ABSTRACT ... ii

ACKNOWI.EDGEMF.NTS ..iii

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... x

I. INTRODUCTION ... 1

A. STRUCTURE ... 1

B. GOALS AND MOTIVATION ... 2

II. DEFINITIONS AND NOTATION .. 3

A. TERMS .. 3

B. SUBSTITUTIONS 4

C. EQUATIONAL THEORIES ... 5

D. FIRST-ORDER LOGIC ... 6

III. AN OVERVIEW OF UNIFICATION .. 7

A. HERBRAND'S UNIFICATION PROCEDURE 8

B. ROBINSON'S UNIFICATION ALGORITHM 9

C. IMPROVEMENTS ON THE EFFICIENCY OF ROBINSON'S
ALGORITHM ...14

1. PROLOG ...14

2. The Paterson-Wegman Algorithm ..16

3. The Martelli-Montanari Algorithm 18

4. The Linear Nature of Unification 19

D. TERM MATCHING ..19

E. E-UNIFICATION .. 20

1. Early work in E-unification ..21

www.manaraa.com

V

2. Unitary, Finitary, and Infinitary Complete Sets of Unifiers 22

3. AC Unification.............................. 24

a. The Diophantine Process ..24

b. The Restricted Stickel AC Unification Algorithm 27

c. The Generalized Stickel Algorithm30

d. The Christian-Lincoln AC Algorithm 33

e. An ACI Unification Algorithm 36

4. The Yelick Model of F-Unification37

5. Computational Complexities of E-unification38

IV. A REVIEW OF COMPLETION PROCEDURES...........................39

A. COMPLETE SETS OF REDUCTIONS 41

B. THE KNUTH-BENDIX COMPLETION PROCEDURE.........42

1. The Conditions for a Complete Set of Reductions42

a. The Finite Termination P roperty42

b. The Church-Rosser P roperty..43

c. The Lattice Condition...44

2. The Test for Completeness ...46

3. The Completion Procedure ...49

4. Failure-Resistance ..50

C. THE PETERSON-STICKEL E-COMPLETION PROCEDURE 52

1. E-Complete Sets of Reductions................. 53

2. E-compatibility .. 54

3. The AC Completion Procedure .. 55

D. THE JOUANNAUD-KIRCHNER EXTENSIONS59

1. Confluence and Local Confluence Revisited 59

2. Coherence and Local Coherence .. 60

3. C o n flu e n c e a n d C o h e re n c e C ritica l P a irs 62

www.manaraa.com

4. Dynamic Extensions .. 62

V. IMPLEMENTATION NOTES ON E-UNIFICATION AND
E-COMPLETION..63

A. E-UNIFICATION .. 63

B. THE E-COMPLETION PROCEDURE70

VI. TERM SYMMETRY ..73

A. ALTERNATIVE PRUNING TECHNIQUES73

B. THE DEFINITION OF TERM SYMMETRY................. 76

C. TERM SYMMETRY IN E-UNIFICATION AND IN
E-COMPLETION ..78

1. Symmetric Reductions ...80

2. Symmetric Critical Pairs .. 81

3. Symmetric Unifiers ...84

4. Symmetric Subterm s...87

D. TERM SYMMETRY ALGORITHMS90

1. A Term Symmetry Decision Algorithm 90

2. An Algorithm for Finding Asymmetric Subterms (Strict
D om ains)............................... 97

3. An Algorithm for Finding Asymmetric Unifiers 99

VII. RESULTS ..102

A. HARDWARE AND SOFTWARE ISSUES102

B. WEIGHTING FUNCTION ...103

C. TEST CASES ...103

1. Abelian Group .. 104

2. Commutative Ring with Identity.. 107

3. Group Homomorphism ...109

4. Distributive Lattice with Identity 112

D. OBSERVATIONS .. 115

1. AC Test Results ..115

vi

www.manaraa.com

2. ACI test results ..115

VIII. CONCLUSIONS .. 117

A. SUMMARY ...117

B. TOPICS FOR FUTURE RESEARCH ..118

REFERENCES ...120

VITA .. 123

Vll

www.manaraa.com

vrn

LIST OF ILLUSTRATIONS

Figure Page

1 Robinson's unification algorithm ... 11

2 An example of directed acyclic graph representation................................ 17

3 The AC unifiers for the term pair of example 3.7..................................... 29

4 Stickel's AC unification algorithm for variable-only terms 30

5 Stickel's generalized AC unification algorithm 33

6 Confluence and local confluence.. 46

7 The Knuth-Bendix completion procedure .. 51

8a The Peterson-Stickel AC completion procedure, part 1 of 3...................... 56

8b The Peterson-Stickel AC completion procedure, part 2 of 3...................... 57

8c The Peterson-Stickel AC completion procedure, part 3 of 3...................... 58

9 Confluence and local confluence modulo E... 60

10 Coherence and Local coherence for E-completion.................................... 61

11 The top level function of the recursive E-unification algorithm................ 64

12 A recursive null-E unification algorithm.. 65

13 Siekmann's C unification algorithm.. 66

14a The AC I-unification algorithm implemented, part 1 of 2.......................... 69

14b The AC I-unification algorithm implemented, part 2 of 2.......................... 70

15a The E-completion procedure implemented, part 1 of 2.............................. 71

15b The E-completion procedure implemented, part 2 of 2.............................. 71

16 An algorithm to decide if two terms are symmetric.................................. 92

17 Mappings between a pair of symmetric terms... 96

18a Algorithm to calculate the asymmetric strict domain of a term, part 1 of
2.. 98

18b Algorithm to calculate the asymmetric strict domain of a term, part 2 of
2... 99

www.manaraa.com

19

IX

An algorithm to calculate asymmetric complete sets of unifiers for
E-completion.. 101

www.manaraa.com

X

LIST OF TABLES

Table Page

I THE BASIS SET FOR THE DIOPIIANTINE EQUATION OF
EXAMPLE 3.7.. 27

II BASIS SET PRESENTED BY CHRISTIAN AND LINCOLN............. 35

III THE MATRIX REPRESENTATION OF A BASIS............................... 35

IV THE REGIONS OF A BASIS MATRIX... 35

V E-UNIFICATION COMPLEXITIES OF SOME COMMONLY USED
THEORIES... 38

VI STATISTICS FOR ABELIAN GROUP... 106

VII STATISTICS FOR COMMUTATIVE RING WITH IDENTITY. . . 109

VIII STATISTICS FOR GROUP HOMOMORPHISM............................... 112

IX STATISTICS FOR DISTRIBUTIVE LATTICE WITH IDENTITY. 114

www.manaraa.com

1

I. INTRODUCTION

A. STRUCTURE

In chapter 2, the definitions and notation throughout the remainder of the paper

are presented. Additional definitions are provided as needed to supplement this list.

Chapters 3 and 4 arc reviews of literature pertaining to unification and

completion procedures, respectively. The history of unification is profiled beginning

with Herbrand's work of the 1930's and continuing to the present. Included is a

discussion of the extension of unification to E-unification, that is, the unification of

terms containing operators that have properties described by a set of equations.

Particular attention is given to the E-unification of terms containing

associative-commutative (AC) or associative-commutative-with-identity (ACI)

operators, which has become an area of high research interest with the advent of

commercially available symbolic mathematics manipulators, such as MACSYMA,

REDUCE, and MAPLE. The work performed by such products is done, in part,

through the use of complete sets o f reductions, that is, sets of rules for simplifying

terms of an algebraic system such that the equality of those terms can be quickly

decided. Chapter 4 contains an overview of procedures that can generate complete

sets of reductions for some classes of algebraic systems, from the early and rather

restrictive procedure developed by Knuth and Bendix to the much more general

procedure of Jouannaud and Kirchner.

Chapters 5, 6, and 7 describe the software that we implemented for this research

project. Included are pseudo-code and descriptions of our E-unification algorithm,

E-completion procedure and, in chapter 6, algorithms for the detection and

exploitation of the property of term symmetry between syntactic structures such as

terms and sets of substitutions. This portion of the paper represents original work,

www.manaraa.com

2

and proofs of correctness of the theory and of correctness and termination of the

associated algorithms are presented. Chapter 7 describes the examples used to test

the viability of applying the theory and the results of those tests.

Chapter 8 contains our conclusions and ideas for future research.

B. GOALS AND MOTIVATION

The Knuth-Bendix type of completion (or E-completion) procedure operates by

calculating and processing all critical pairs of terms that can be formed from all pairs

of reductions in the set to be completed. This combinatorial behavior is made even

worse, because if one of the critical pairs cannot be simplified to an identity, then it is

used to form a new reduction that is added to the set of reductions, and then the

entire process begins again.

The goal of this research is to find some method to reduce the amount of

processing needed to complete a set of reductions. Early work in this area by

Lankford was later extended by Kapur, Musser, and Narendran. Their technique

involves discarding those superpositions and unifiers, the building blocks of the critical

pair, that are not in simplest form, with respect to the set of reductions. This has

proven to yield significant savings in processing time. Our approach is based on the

concept of term symmetry, a variable renaming isomorphism that can exist between

terms, unifiers, and other syntactic structures. It is our goal to show that structures

exhibiting term symmetry represent redundant information, and that these

superfluous structures can be discarded without causing any adverse changes in the

results of the E-completion procedure. This idea will be tested on several example

cases, and the results will be presented and analyzed.

www.manaraa.com

3

II. DEFINITIONS AND NOTATION

A. TERMS

V is a countably infinite set of variables. The members of V are designated by

the names w, v, w, jc, y , z, i/„ v„ w„ jc„ y it and z„ for 0 < /.

F is a finite set of functions, or operators. The members of F are designated by

the names +, —, x , / , / g, h , f , gt, and hit for 0 < i. The degree of an operator / i s the

number of operands that it requires, and is written as deg(/). The set C of constants

is the subset of F containing exactly those operators that have a degree of 0. That is,

C = { f \ f e F * deg(/) = 0}. C is assumed to be non-empty, and its members are

designated by the names 0, 1, a, b, c, d, e, at, bit c„ dit and <?,, for 0 < /.

The set of all terms constructed from members of V and F, written as T{ V,F), or

simply T if no ambiguity arises, is defined recursively as follows:

(1) Variables are terms.

(2) Constants are terms.

(3) I f /e F, deg(/) = «, and /„ ..., t„ are terms, th e n // , ..., tn) is a term.

(4) Only those syntactic structures defined by (1) through (3) are terms.

Terms may be represented as trees. The domain of a term t, written as dom(f), is

the set of node occurrences in the tree, designated by dotted sequences of integers,

following the notation of Huet and Oppen [//O80X The empty sequence is

designated as e. The domain is recursively defined as follows:

(1) (Vx e V) dom(jc) = {c}.

(2) (Vce Qdom(c) = {c}.

(3) (V/fr,, ..., O e T) dom(/(r,........ O) = {«} U {'V I 1 ^ « A^e dom(/,)}.

www.manaraa.com

4

The subterm of a term, f, at a position, or occurrence, / e dom(f), is written as

t/L It follows that

(1) t/e = t, and

(2) J[t\, - , 0 1 iJ = tjj.

The strict domain of a term, f, written as sdom(f), is the set of all non-variable

occurrences in t. That is, sdom(f) — {/ | dom(f) a t/i^V). The set of all variables

occurring in / is written as vars(/).

B. SUBSTITUTIONS

A set o f substitutions is a set of ordered pairs, each of which has the form jc «— f,

such that x e V and t e T, and no variable occurs as the left-hand side of more than

one pair. Sets of substitutions are designated by the names 6, 0, A, o, 0„ and

for 0 < /. The left-variables of a set of substitutions, 6, written as lvars(0), is the set

containing the left-hand side of each member of 0. The right-variables of 0, written

as rvars(0), is the set of variables occurring in the right-hand side of any member of

0. Stated another way, lvars(0) = {x | jc <- / e 0} and

rvars(0) = {y \ x +- t e 0 e vars(/)}.

A set of substitutions, 0, is applied to a term, t, written as 0(r), by

simultaneously replacing each variable occurring in t, that also occurs in lvars(0), by

the term paired with the variable in 0. This can be restated as follows:

(1) If / = jc and jc «- s e 0, then 6(t) — s.

(2) If / = x and jc <— s£0, then 0(f) = t.

(3) If t = f t lf ..., fj, then 0(f) =7(0(0, ..., 0(0).

Two sets of substitutions, 0, and 02, are equivalent if (V jc e V) B^x) = 02(jc).

www.manaraa.com

5

The composition of the sets of substitutions, X and 0, written as X<>0, is a

combination of the two sets such that

XoQ — {jc ♦- X(/) | jc«-fe0}U{>'*“ 5 i j ; *“ -s e ^ A >,̂ lvars(0)}.

The application of a composition, XoO, to a term, t, has the same effect as first

applying 0 to r, then applying X to the result. That is, Xo6(t) = X(0(t)).

A variable-only set o f substitutions is a set of substitutions, {jc <— / | t e V}.

C. EQUATIONAL THEORIES

Let E be a set of equations, or axioms. The equational theory presented by E ,

written as E“, is the finest congruence over T that contains E. That is, E" is exactly

the set of equations derivable from E by a finite proof, using reflexivity, symmetry,

transitivity, and replacement of equals. The congruence relation on terms is written

as s = t, where s = t e E*. FE is the subset of F containing exactly those members of F

described by E. For example, FAC is the subset of F for which E contains an

associative and a commutative axiom.

Nested occurrences within a term, /, of an operator, / , for which E contains an

associativity axiom may be flattened, that is, / may be treated as an operator of

arbitrary degree, and the nested occurrences of the operator and its associated

parentheses be removed. For example, f i x , fiy, z)) = fifix, y), z) = fix , y , z).

www.manaraa.com

6

D. FIRST-ORDER LOGIC

A predicate is a Function that has as its range the set {TRUE, FALSE).

Predicates are designated by the names P, Q, R, Pit Q„ and Rit for 0 < /. The degree

of a predicate, P, is written as deg(/>).

A literal is defined as follows:

(1) If P is a predicate and deg(P) = 0, then P is a literal.

(2) If P is a predicate, deg(P) = n, and r„ , /„ are terms, then P{tu ... , /„) is a

literal.

(3) If / is a literal, then its negation, —./, is also a literal, such that if / = TRUE,

then -•/= FALSE, and if / = FALSE, then -n/= TRUE.

(4) Only those syntactic structures defined by (1) through (3) are literals.

A clause is a disjunction of literals. A proposition is a conjunction of clauses.

www.manaraa.com

7

III. AN OVERVIEW OF UNIFICATION

Unification is a pattern matching process which identifies a match between all

elements of a set of terms only if they can be made equal by substituting values (that

are also terms) for variables occurring in them.

More formally stated, the unification problem is that of searching for a set of

term-for-variable substitutions, 6, that, when applied to a set of terms,

.V -- (a*,, ..., $„}, reduces 5’ to a singleton; that is, 0(a,) = 0(s2) = ••• = 0(s„). If such a

set 6 exists, it is called a unifier of S.

One of the areas in which unification has proven to be important is that of

automated theorem proving. Early attempts to automate the theorem proving

process were based upon the work of Herbrand; his proof method uses a form of

unification on one class of propositions. However, in other cases, the process of

unification is nothing more than an elaborate "generate-and-test" process,

instantiating the variables of a proposition from progressively larger subsets of the

Herbrand universe of the proposition. If the proposition is satisfiable, this process

will eventually halt. However, if the proposition is not satisfiable, then the process

will never terminate. Later efforts, based upon the work of Robinson, were much

more successful due to the computationally effective unification algorithm that

Robinson introduced.

Another area in which unification has shown itself to be a valuable tool is that

of term rewriting systems (for example, symbolic mathematics packages such as

MACSYMA and REDUCE). Term rewriting itself can be viewed as a very

generalized form of unification, in which term-for-term substitutions are performed

instead of term-for-variable substitutions. A good example of a biological term

rewriting system is a human trigonometry student attempting a proof of an identity.

The student begins with a pair of unlike terms and, through a series of term

www.manaraa.com

8

rewritings on part (or all) of either or both of the terms, tries to derive a pair of

identical terms. Automated term rewriting systems have been applied to problems in

logic programming, programming language interpreters, and operating systems.

More recently, unification and other automated theorem proving tools have

been applied to diagnostic expert systems. These tools give a firm mathematical

foundation to the sometimes shaky experiential nature common to many expert

systems. Hybrid systems, combining the best features of both rule-based and

logic-based approaches to expert systems, are being investigated and developed.

A. HERBRAND'S UNIFICATION PROCEDURE

Many people attribute the "discovery" of unification to J. A. Robinson

C/to65]. However, the concept of unification predates Robinson's definition by at

least thirty years.

In chapter 5 of his 1930 thesis at the University of Paris, Jacques Herbrand

[//e30] discusses the provable satisfiability of first-order predicate calculus

propositions (this chapter is the source of Herbrand's theorem on the the satisfiability

of propositions). In his paper, he states that he knows of no uniform procedure that

would render the satisfiability of arbitrary propositions decidable, but he goes on to

write

"However, there is a class of propositions for which we have such a
procedure, namely, the class of propositions such that the matrix of each is
a disjunction of atomic propositions and of negations of atomic
propositions."

Specifically, the procedure that Herbrand was writing about is one which can decide

the satisfiability of a proposition which contains positive and negative occurrences of

the same predicate symbol—that is, a proposition that includes a "sub-proposition" of

the form

v -»P(tl9 ..., O,

www.manaraa.com

9

such that P is a predicate symbol and s„ ..., snf r„ ..., tn are terms. This procedure

is a search for instantiation values for the terms in the sub-proposition that will make

the two predicates identical, except for their sign. If the search is successful, the

sub-proposition is satisfiable and, thus, the original proposition (which is a

disjunction of literals) is also satisfiable. Herbrand describes how to perform this

search, which is a unification procedure.

However, as Herbrand pointed out, his unification procedure applies only to

that class of propositions that contains both positive and negative occurrences of the

same predicate symbol. For all other propositions, he took a brute force approach.

An iterative process is begun, and with each pass, the variables of the proposition are

instantiated from an increasingly larger subset of the Herbrand universe of the

proposition. The Herbrand universe of a proposition is the set of all ground

(variable-free) terms which can be formed from the function and constant symbols

that occur in the proposition (if no constants occur, an arbitrary one is introduced).

If any function symbols (other than constants) occur in the proposition, the

Herbrand universe will contain an infinite number of terms. If the proposition is

satisfiable, Herbrand's procedure will terminate. If the proposition is unsatisfiable,

Herbrand's procedure will never terminate.

B. ROBINSON'S UNIFICATION ALGORITHM

In 1965, Robinson published a landmark paper [/to65] in which he introduced

resolution as the single inference rule needed to prove a set (conjunction) of clauses to

be unsatisfiable, where each clause is a disjunction of literals. The resolution rule is

very similar to modus ponens; in fact, modus ponens is an instance of resolution.

Resolution infers a new clause called a resolvent from two other clauses in the

following manner:

www.manaraa.com

clause 1:

10

C V P(slt ... , sn)

clause 2: C v -i P(tlt ..., /„)

resolvent: 0{C v O)

where C and C' are (possibly empty) disjunctions of positive and/or negative literals,

P is a predicate symbol, and 6 is a unifier of P(slt ..., s„) and P(tx, ..., /„).

A proof system that is based on resolution is a refutational system; that is,

proofs are performed by contradiction. To use such a system, the clause to be proven

is negated—that is, assumed to be false—and added to a (possibly empty) set of

supporting clauses (axioms). Clause pairs are resolved until all possible clause pairs

have been resolved or a contradiction is encountered. A contradiction occurs when

two clauses of the form P(slt ..., sj and —«/*(/„ ..., fj are resolved, producing the

empty clause as a resolvent. Robinson proved that a resolution-based proof system

will derive the empty clause if and only if the set of clauses being resolved embodies a

contradiction.

Considering the combinatorial number of resolutions that can take place on a

set of clauses in a resolution-based proof system, it is evident that unification is going

to be called upon very frequently. Thus, it is important to make it as efficient as

possible. Efficiency will be even more critical in E-unification (unification under an

equational theory).

There can be an infinite number of different unifiers for a particular set of terms.

However, Robinson proved that there is only one most general unifier for a set of

terms, modulo variable renaming.

Definition 3.1: Let a and 0 be two unifiers of a set of terms S. If there exists a

(possibly empty) set of substitutions, 2, such that

6 = Xoo,

www.manaraa.com

11

then a is more general than 6, written as 6 < o. The unifier o is called the most

general unifier (mgu) of S if 0 < o for all unifiers, 0, of S. That is, any unifier of a set

of terms can be obtained through the composition of some set of substitutions with

the mgu.

ROBINSON-UNIFY(S);
begin

<*o := 0;
k := 0;
Status : = LOOP;
while (Status = LOOP) do begin

if (<r*(S) is a singleton)
then Status := SUCCHSS; /*ak is the mgu */
else begin

D*: = disagreement set of <rA(S);
sort D* so that all variables appear first;
V*: = first element of sorted D*;
U*: = second element of sorted D*;
if (V* is a variable and does not occur in U*) (1)
then begin

<x*+. := {V* U*}oct* (2)
k := k + 1;

end
else Status := FAIL;

end;
end;
retum(Status, ok);

end;

Figure 1. Robinson's unification algorithm

Figure 1 contains the pseudo-code for Robinson's unification algorithm. The

algorithm attempts to unify a set of terms, S , returning either a unifier of the set, or

failure if the set has no unifier. Subterms are unified iteratively in a left-to-right

manner such that, unless failure has occurred, the set of substitutions, oki calculated

in the A:0* iteration unifies some prefix of all terms in S. The set <rA(S) is the result of

applying ok to each element of S. The disagreement set, Dk of ok{S) is the set

consisting of the subterm of each term in <r*(S) at the leftmost position where not all

of those subterms are identical; thus Dk represents the leftmost subterms that must

www.manaraa.com

12

still be unified. In statement (2) of the pseudo-code, new substitution pairs are added

to the set of substitution pairs by way of composition, as defined in chapter 2.

Robinson proved in his paper that the above procedure always terminates, is

correct, and returns a unifier of the set of terms if and only if the set will unify. He

also proved that the unifier returned by the algorithm is the mgu of the set of terms.

Example 3.1: Unify the set S = {/[a, jc, £(/*(y))), A z» s(z)> #M)} using Robinson's

algorithm.

For k = 0:

*0= 0

<*o(S) = {/(«, sW »)), Az> &)> sM)}
A» = {z, a}

For k = 1:

01 — {z «— a}

°\{S) = •*» *(%))). A a> £(«). sM))

A = {*> £(«)}

For k = 2:

02 = {x *- g(a)}o{z <- a] = {z <- a, x «- g(a)}

o2(S) = {/(a, g(a), g(h(y))), J{a, g(a), g(w))}

A = {w, h(y)}

For k = 3:

cr3 = {w <- h{y)}o{z <- a, jr*-g(a)} = {z * -a, x <-g(a), w h{y)}

o,(S) = {/(a, g(a), gih(y)))}

Thus, the mgu of S is <r3 = {z <— a, jc «- g(a), w *- /i(y)}. Note the left-to-right manner

in which the terms arc unified, as discussed earlier. It can also be observed that all of

the terms in <t*(*S) are identical to the left of the elements of Dk.

www.manaraa.com

13

At the point in Robinson's algorithm when a new substitution pair is being

calculated, a check is made to see if the variable to be replaced, Vkt occurs within the

term which is to replace it, Uk. (See statement (1) in figure 1) If so, the algorithm

halts immediately with failure. This operation is called the occurs check, and its

presence is necessary to make Robinson's unification a sound procedure. The

soundness of unification will be further explained in the discussion of PROLOG,

below. The occurs check gives the algorithm a worst-case complexity which is

exponential based on the size of the terms being unified. This exponential behavior

can be illustrated by a simple example.

Example 3.2: Unify the set S = {/(g(*0, *o)» *2, g(x2, -*2)), A xu g(xlt x y), jc3)}.

For k = 0:

<*0 = 0

<*o(S) = {/tet*0, *0), *2, g(x2, *2)), J[xlf g(xlt *,), x,)}

^0 {"̂1» *0)}
For k = 1:

= { * 1 <- g{x0, *„)}

<*i(S) = {J{g(x0, *0), *2, g(x2, *2)), A gix0, *0), g(g(x0, x0), g{x0, x0)), x3)}

A = {* 2 , *0). *0))}

For k = 2:

= { * 1 «- g(x0x 0), x2 4- gig{xQ, x0), g(x0, x0))}.

= A g(x0, *0), g(g(x0, x0), g(x0f x0)), g(g(g(x„, x0), g(x0f x0)), g(g(x0, x0), g(x0, x0))))t

Agfa, x0), g(g(x0, x0), g(xtt, x0)), x3)}

A = {*3, ^ (^ (^ 0, XQ), g(x0, X0)), g(g(x0f x0), g(x0, X0)))}

For k = 3:

= {xx g(x0 x0), x2 ♦- gteCxo, *0), g(x0, *„)),

*3 «- g(g(g(x0, x0), gfo, *„)), gig{x0, x0), g(x0, x0)))}

o3(S) = {Ag(x0, Jf0), g{gix0, ar0), g(x0, x0))» g{g{g(x0, x0), g(x0, x0)), g(g(x0, x0), g{x0, x M)

www.manaraa.com

14

Note that the mgu, a3, of the terms in S contains 21 occurrences of the variable x0 in

the term that is to replace each variable jc„ for 1 < / < 3.

C. IMPROVEMENTS ON THE EFFICIENCY OF ROBINSON S ALGORITHM

Since unification is such an important and frequently used component of

applications such as automated theorem provers and term rewriting systems, the

exponential nature of Robinson's unification algorithm prompted a great deal of

research into methods of improving its efficiency or replacing it with some other,

faster unification algorithm. We now review some of these efforts.

1. PROLOG.

The statements of a program written in PROLOG (PROgramming in LOGic)

are actually first-order predicate logic clauses. Specifically, they are Horn

clauses—disjunctions of literals with, at most, one positive literal. The program itself

is a collection of definite clauses—clauses with exactly one positive literal. Execution

of a PROLOG program is a series of resolution steps, and begins by resolving a

distinguished goal clause—a. clause with no positive literals—with one of the definite

clauses. Each successful resolution produces a new goal clause which is then used as

a parent clause along with one of the definite clauses in the next resolution step.

Execution continues until a resolution yields a resolvent null clause (successful

completion of the program), or the goal clause cannot be successfully be resolved

with any definite clause (failure).

Early in its development, the designers of PROLOG realized that an exponential

unification algorithm would render PROLOG useless for any sizable applications;

unification is a basic operation in PROLOG that is generally invoked many times for

each successful unification. A solution had to be found, and one was. The designers

www.manaraa.com

15

chose to completely omit the occurs check! The reason is that unification without

occurs check is linear on the size of the smallest term being unified. However, the

speedup comes with a price; without the occurs check, unification is an unsound

procedure. That is, without the occurs check, it is possible to generate a unifier in

which a particular variable appears on both sides of one substitution pair. This may

cause PROLOG to go into an infinite loop or, even worse, to return p.nswers that are

wrong.

Example 3.3: Consider the two-clause PROLOG program

\t(Xf X + 1).

lt(3, 2): —l t (T+l , Y).

The first clause of this program can be read as "X is less than X + 1." The second

clause can be read as "3 is less than 2 if Y + 1 is less than Y.~ Both of these are true

statements. To begin program execution the goal clause

? - lt(3, 2).

is introduced. The goal clause can be read as "is 3 less than 2?" The execution of the

program proceeds as follows:

(1) Unification is attempted between the goal clause and the first program

clause—unification fails.

(2) Unification is attempted between the goal clause and the second program

clause—unification succeeds with a mgu {}.

(3) The resolvent goal clause "? - lt(T + 1, Y)~, is produced, which can be read

as "is Y + 1 less than YV

(4) Unification is attempted between the new goal clause and the first program

clause.

It is in step (4) of the execution of the logic program that things begin to go awry.

During the iteration for k = 1 in Robinson's algorithm, ct, = {X <- Y + 1}, and

Z),= {y, K + l + 1}. Clearly, an occurs check on Dx reveals that the variable Y

www.manaraa.com

16

occurs in the term Y+ 1 + 1, so the unification should halt with failure. However,

since the unification algorithm being used is devoid of an occurs check, it will not fail,

but will instead add the substitution Y <- Y + 1 + 1 to the partial unifier. What

happens at this point depends on the particular implementation of PROLOG being

used. Some versions, such as Micro-PROLOG for the IBM PC, will go into an

infinite loop trying to replace all occurrences of the variable Y with the term

Y + I + l . Others, such as Quintus PROLOG running under the VMS operating

system on a Micro-VAX II will just return the answer "YLS", which is obviously

wrong.

Thus, PROLOG is a language with a message, and that message is "user

beware!" It is left entirely to the programmer to avoid situations that would cause

problems such as that cited above.

2. The Paterson-Wegman Algorithm.

Many of the successful attempts to improve or replace Robinson's unification

algorithm have been aimed at modifying the data structures representing the terms to

be unified. One such effort is the algorithm of Paterson and Wegman

Their algorithm unifies a pair of terms with a space and time complexity which is

linear based on the size of the terms to be unified.

In order to use the Paterson-Wegman algorithm, the terms to be unified must be

expressed as a directed acyclic graph (dag) in which common subexpressions are

represented by a single subgraph. Nodes labelled by an n-ary function name will

have an outdegree of n (thus nodes labelled by constants name will have an outdegree

of 0). Nodes labelled by a variable name will have an outdegree of 0. Nodes with an

indegree of 0 are roots. Figure 2 depicts the dag representation for the pair of terms,

./te(-*i), and J[x2, x3).

www.manaraa.com

17

Once the pair of terms has been transformed into a dag, the input to the

Paterson-Wegman algorithm is a set consisting of the root nodes of the two terms.

This set is actually an equivalence class, since for the two terms to be unifiable, the

roots must be unifiable. The algorithm proceeds in a top-down manner through the

dag, working only with one equivalence class of root nodes at a time. When the

nodes in a root class have been processed, they are removed from the dag, along with

the edges leading from them. This exposes new root nodes which are then divided

into equivalence classes. When all nodes have been removed from the dag, the pair

of terms has been unified. Because of the data representation used, no occurs check

is needed; an occurs check situation will manifest itself as a cycle in the graph, and

the algorithm will fail since the nodes in the cycle can never become a root node, and

will never be processed and removed from the dag.

www.manaraa.com

18

3. The Martelli-Montanari Algorithm.

In 1982, Martelli and Montanari published a paper in which they outlined an

"almost-linear" algorithm for the unification of a pair of terms [A/M82]. Like

Paterson and Wegman, Martelli and Montanari approached the efficiency problem of

unification by changing the data structure used to represent terms. A pair of terms, s

and /, to be unified by the Martelli-Montanari algorithm are represented as a

singleton set, S = { 5 = /}, of simultaneous equations; unification is then reduced to the

problem of solving this set of simultaneous equations. The set of equations expands

and contracts according to the application of two transformations described by

Martelli and Montanari:

(1) Let J[tlt ... , tn)=J[ul, ..., e S. Term reduction is the process of

replacing this equation in S by the equations tx — ulf ..., tn = un. If / is a

constant (i.e. if n — 0), simply delete the equation from S.

(2) Let x = t e S, such that jc is a variable and / is a term. Replace all

occurrences of jc in all other equations of S by /.

Martelli and Montanari claim that their algorithm, when implemented with sets

of variables represented as lists, has a complexity of O(«log «), where n is the number

of distinct variables in the pair of terms. They also claim that, when implemented

with sets of variables represented as trees and when using the UNION-FIND

algorithm [\AH1A~\ to add and to access elements that the complexity drops to

0(mG(m)), where G(m) is the inverse of Ackermann's function1 and m is the number

of variable occurrences in the pair of terms. Thus, the Martelli-Montanari unification

algorithm is indeed almost linear, and uses more "standard" data structures than that

‘Ackermann's function is defined by:
F(0)=1,
F(i) = 2F<-‘>.

Thus, F(0) = 1, F(l) = 2, F(2) = 4, F(3) = 16, F(4) = 65536, etc.

www.manaraa.com

19

found in the Paterson-Wegman algorithm. The reason that the Martelli-Montanari

algorithm is mentioned here, even though its complexity is theoretically worse than

that of the Paterson-Wegman algorithm, is that Martelli and Montanari claim that,

when actually implemented, their algorithm usually outperforms that of Paterson and

Wegman.

4. The Linear Nature of Unification.

It has been shown by Dwork, Kanellakis, and Mitchell C/)^84] that unification

is an inherently linear process, that is, even when run in a parallel environment, the

best results that can be achieved are log space and linear time complexities.

With a lower bound defined on the complexities of unification, and the existence

of algorithms that arc at or near that complexity level, other methods have been

investigated for increasing the speed of unification. These include the integration of

unification algorithms into the microcode of computers [Ca85] and the design of a

parallel unification integrated circuit chip [TZ?86].

D. TERM MATCHING

A useful subset of the unification problem is the term matching problem. The

term matching problem for a pair of terms, s and r, is a search for a set of

substitutions, 0, such that

0(s) = /,

that is, a set of substitutions which, when applied to just one of the terms being

matched, transforms it into a term identical to the second term. Such a set 6 is called

a match of s and t. A match is a unifier, but a unifier is not always a match. 'Perm

matching, or rather, its extension to E-matching, is used extensively in term rewriting

applications.

www.manaraa.com

20

E. E-UNIFICATION

Recall from the definition of unification in the introduction to this chapter that

the elements of a set of terms unify only if they can be made equal by substituting

values for variable occurrences in those terms. Equality has been interpreted up to

this point as meaning identity. Now, however, the definition of unification will be

broadened by extending the definition of term equality.

E-unification is the search for a set of substitutions, 0, which, when applied to

each member of a set of terms, S = {slt ... , s j, makes the elements of S provably

equal under some equational theory, E, that is, 0(5 ̂= 0(s2) = ... = 0(sj.E E E
The set of axioms describing E could be the empty set, in which case E-unification is

exactly that performed by Robinson's unification algorithm; from this point, we shall

call this null-E unification.

There are many situations in which the ability to operate under a non-empty

equational theory is useful. For example, a software system designed to solve

problems in symbolic mathematics needs to have the ability to recognize and process

operators which exhibit the associativity, commutativity, identity, and/or idempotency

properties. Resolution-based proof systems and term rewriting systems designed

around a null-E unification algorithm can still be forced to deal with non-empty

equational theories, but not without introducing new problems. The obvious way is

to include the axioms describing the equational theory as part of the set of terms

input to the system. However, such systems may already be taxed by the

combinatorics of the pairwise processing of clauses or terms, and must now deal with

an even larger set of clauses. In addition, this solution tends to make such system

"wander"; that is, many trivial and unnecessary intermediate results may be generated

(since the solution search space has increased in size). An even worse consequence is

that certain axioms, such as the commutativity axiom, can cause systems to go into

www.manaraa.com

21

an infinite loop (more detail is given about these problems with respect to term

rewriting systems in chapter 4).

An alternative solution is to build all or some of the axioms describing the

equational theory into the unification algorithm rather than including them in the set

of input axioms. The inclusion of an E-unification algorithm reduces the

combinatorics overhead of processing input axioms, thereby resulting in a more

focused search of the solution space of a problem. In addition the potential looping

behavior associated with certain "troublesome" axioms of the equational theory is

avoided. However, this solution, too, is not without its problems.

The major drawback of E-unification is that a different unification algorithm will

be needed for each equational theory. This entails a change in program code

whenever another equational theory is to be used. The use of a null-E unification

algorithm merely requires a change to the set of input axioms in order to change

equational theories. Some progress has been made in the creation of a "general"

E-unification algorithm for certain classes of equational theories, but there is still no

solution for the general case. Another problem is that there are some equational

theories which can be described as axioms, but for which there exists no unification

procedure (since E-unification is equivalent to the decision procedure for equivalence

of terms under an equational theory).

1. Early work in E-unification.

One of the earliest researchers of E-unification was Plotkin [P/72]. He

investigated many of the advantages and problems of developing unification

algorithms for various equational theories. Most of his work deals with

resolution-based proof systems. It was he who first showed that to guarantee the

www.manaraa.com

22

completeness of a resolution-based proof system using E-unification, the set, L, of

unifiers calculated for a set of terms, S, must exhibit two properties:

(1) Correctness: All a e l must unify S.

(2) Completeness: If 6 unifies 5, then there exists a a e Z and a X such that

6 = Xo a.

Plotkin also described an additional property that is desirable for efficiency reasons,

but which is not necessary for the completeness of a resolution-based proof system:

(3) Minimality: If 6 and a are both members of E, then there is no X such that

6 = Xoa.

A set of unifiers for a pair of terms, s and /, that has the properties (1) and (2)

described above is said to be a complete set o f unifiers o f s and t, written as csu(s, t).

If, in addition, the set of unifiers has property (3), it is called a minimal complete set o f

unifiers, written as //csu(s, r).

2. Unitary, Finitary, and Infinitary Complete Sets of Unifiers.

Plotkin categorized equational theories for which unification is decidable into

four classes, based upon the maximum cardinality of their minimal complete set of

unifiers: unitary, finitary, infinitary, and nullary. A unitary theory is one for which

the minimal complete sets of unifiers can contain no more than one member. The

empty equational theory (that is, null-E) is in this category. Robinson proved that a

set of null-E terms will have, at most, a single mgu, modulo variable renaming by

composition.

A finitary equational theory is one for which a minimal complete set of unifiers

may contain more than one , but a finite number of maximally general unifiers, that

is, unifiers which are mutually most general. A commutative equational theory,

whose operators are described by a set of axioms of the form

www.manaraa.com

23

Ax, y) =Ay, x),

is a finitary theory. The existence of multiple unifiers for a set of terms will increase

the complexity of a solution search space.

Example 3.4: Let / be an commutative (C) operator, and let 5 = A X, y , A and

t= A a, b, c) be terms. Then /ycsu(s, t) = {{x «- a, y «- b, z <-c),

(x<- a, y< - c, 2 <- b), {x <-b, y <-a, z <-c}, {x <-b, y * - c, z +-a},

{x+~c, y * -a , z <- b}, {x <- c, y <- b, z <- a}}.

An Infinitary equational theory is one that may have an infinite number of

maximally general unifiers. One such theory is an associative equational theory,

whose operators are described by a set of axioms of the form

AAx, y), A = A X, Ay, A)-

Infinitary equational theories re-introduce a problem that existed in Herbrand's

unification, namely, the possible non-termination of the corresponding E-unification

procedure. One can either calculate the complete set of unifiers (in which case the

unification procedure may never halt) or calculate a finite, but incomplete set of

unifiers. Neither of these choices is an attractive one.

Example 3.5: Let f be an associative (A) operator, and let s = A a, x) and t = A X, <*),

be terms. Then //csu(s, /) is the infinite set {{x<-a}, {x <~Aa, a)}»

a, a)}, ... }.

The class of nullary equational theories is the strangest of the four types. A set

of terms under a nullary theory may have a unifier, but a minimal complete set of

unifiers for the terms will never exist! This is true because if a set of terms,

S = {s„ ..., s j, will unify under a nullary theory, there may be an infinite chain of

unifiers,

ax <L a2 <, <7, ^ ...&,

www.manaraa.com

24

such that each <r1+1 is more general than <t„ for 1 < /. Plotkin wrote this about T, his

notation for a minimal complete set of unifiers:

"We also know of no example of a theory T ... for which there is no such
r , although we expect that one exists."

Manfred Schmidt-Schauss [SS86] did, however, find an example of a first-order

equational theory which he proves to be of type nullary. It is an equational theory

whose operators have the properties of associativity and idempotency, that is, an Aid

theory:

J[/[x, y), z) =70 , J[y, z)) and (associativity)

J{xy j c) = j c . (idempotency)

3. AC Unification.

One class of E-unification algorithms that has received much attention over the

past few years is that class designed to unify terms using equational theories

consisting of axioms of associativity and commutativity for a set of operators. This is

due mainly to the application of resolution-based automated theorem provers to

mathematical problems, and also to the commercialization of several

tcrm-rcwriting-bascd symbolic mathematics packages (such as MACSYMA and

REDUCE). Some of the most commonly required unification algorithms are for

associative-commutative (AC), associative-commutative with identity (ACI), and

associative-commutative with idempotency (ACId) theories. The topic of this section

will be that of AC unification.

a. The Diophantine Process.

All AC unification algorithms that have been developed to date exploit one

common factor: A pair of terms involving only one AC operator and any number of

variables can be associated with a linear diophantine equation, and the non-negative

www.manaraa.com

25

integral solutions to that equation correspond to the unifiers of the terms. In order

to gain an understanding of AC unification, which is also the foundation for ACI and

AC Id unification, we shall explore this relationship more closely.

An AC term which consists of one operator and any number of variables is said

to be a variable-only AC term. In order to make the connection between the pair of

variable-only AC terms and the diophantine equation more apparent, it will also be

required that the terms be flattened. A flattened AC term is one in which all nested

levels of associativity have been removed, treating the AC operator as one with an

arbitrary number of operands.

Example 3.6: Let / be an AC operator. Then

= A A “> /> , w)), A x , AAy> x), v)»

is a variable-only AC term, and

•s' = /0 , v, w, x, y, x, v)

is the flattened form of s.

The following example illustrates the transformation of a pair of flattened,

variable-only terms into its corresponding diophantine equation, by example.

Example 3.7: Let / b e an AC operator and let s = Ay, x , x , y, x) and t —A u* v» v) be

a pair of flattened, variable-only AC terms. The diophantine equation corresponding

to the unordered pair of terms, <5, / > , is

3x 4- 2y = u + 2v.

It can be observed that each of the AC terms maps to one side of the diophantine

equation. Each side of the equation is a sum of products, where each product is

composed of a distinct variable from the term associated with the side and a

coefficient that is equal to the multiplicity of that variable in the term.

www.manaraa.com

26

A solution to the diophantine equation is a set of number-for-variable

substitutions that makes the two sides of the equation equivalent. In a like manner, a

unifier of the pair of AC terms is a set of term-for-variable substitutions that make

the two terms provably equal. It can be shown that there is a correspondence

between the non-negative integral solutions of a diophantine equation and its

associated pair of flattened, variable-only AC terms. The solutions sought must be

non-negative and integral because each variable in the AC terms can only be replaced

by a non-negative and integral number of term occurrences. That is, one cannot

replace a variable by negative or a fractional number of term occurrences.

There are an infinite number of non-negative integral solutions to a diophantine

equation. However, each of these solutions can be represented as a sum of members

of a finite basis set of solutions to the equation. A basis set can be algorithmically

constructed by generating solutions for the equation in ascending value order. As

each solution is generated, it is checked to see if it is equal to a sum of solutions

already in the basis. If so, it is discarded; otherwise, it is added to the basis set. This

generation process continues until some predetermined limit is reached for the value

of the equation. The only requirement on the size of this limit is that it must be large

enough that all solutions that are part of the basis are generated before it is reached.

However, it is desirable to make the limit as low as possible, so that the basis

generation process runs as quickly as possible. Several authors have described

methods to calculate this limit, including Huet [7/w78] and Lankford [L<?87].

Zhang [Z/i87] describes a method of basis generation which works more efficiently

for a diophantine equation in which many coefficients have a value of 1.

Table I contains the basis set for the diophantine equation of example 3.7,

above. The basis set was calculated using Huet's limiting factor. The column

labelled "Introduced Variable" is for use in the discussion of Stickel's AC unification

algorithm.

www.manaraa.com

27

Table I. THE BASIS SET FOR THE DIOPHANTINE EQUATION OF

EXAMPLE 3.7.

Solution
Vector X y u V

Solution
Value

Introduced
Variable

bx 0 l 0 1 2 Z X

b, 0 l 2 0 2 Z 2
1 0 1 1 3 z2

K 1 0 3 0 3 z*
bs 2 0 0 3 6 z.s

b. The Restricted Stickel AC Unification Algorithm.

Very similar unification algorithms for terms containing AC operators have been

developed by Stickel [Sr75], and by Livesey and Siekmann [LS76]. Because of

their similarity, only the Stickel algorithm will be described in this paper, because it is

the one used in the implementation developed for use in this research.

Stickel's restricted AC algorithm is one which unifies a pair of flattened,

variable-only AC terms. It is designed around the diophantine equation solution

process described above. Once the basis set of non-negative integral solutions has

been determined for the diophantine equation associated with the pair of terms, each

solution is associated with an introduced variable (that is, a variable not appearing in

either of the AC terms being unified). This can be seen for the diophantine equation

of example 3.7 in the last column of table I. As stated earlier, each non-negative

integral solution to the equation can be expressed as a sum of members of the basis

set. Thus, if the set is the basis from example 3.7, {bXt b2y b2, b4, b5], then each

solution of the equation will be of the form

zxbx 4" z2b2 T z2b2 *4 z4b4 4- zb,

www.manaraa.com

28

where each coefficient, z„ z2, z3, z4, and zs, is a non-negative integer. Then, any

solution to the equation will have as solutions for its individual variables,

Jf = z3 + z4 + 2zs,

y = z, + 2j,

m = 2z2 + z3 + 3z4, and

v = z, + z3 + 3z5.

These values are obtained by reading down the column for each variable in table I.

This generalized form for a solution to the equation corresponds to a general unifier

of the AC terms f ly , j c , j c , y , j c) and flu , v, v):

z*> z s > z s)> 1* z2), u<r-J{z2r Z 2, Z 3, Z 4, Z 4, Z 4) , V z3, zs, zs, z5)}.

However, not all non-negative integral solutions correspond to a valid unifier.

Solutions in which some combination of the introduced variables are set to zero

correspond to AC unifiers in which those same variables have been replaced by the

identity, or null, term. If this causes one of the original term variables, j c , y, u, or z,

in the example, to be set to the identity term, then that set of substitutions is not a

valid unifier of the AC terms, since identity is not one of the properties of the

equational theory.

Thus, the generalized unifier form presented above is not sufficient. In addition,

it must be combined with each member of the power set of {z, = 0, ..., zk — 0} and

each combination must be examined in order to determine which correspond to valid

unifiers and which do not. For the pair of terms in example 3.7, this means that

there are 25 or 32 possible unifiers, of which 19 prove to be valid unifiers; these are

listed in figure 3.

Pseudo-code for the E-unification algorithm developed by Stickel for

variable-only AC terms is presented in figure 4. The symbol # in statement (5)

represents an identity term. In statements (1) and (2) the input terms are flattened.

In statement (3) the operands common to both flattened terms are removed before

www.manaraa.com

29

the diophantine equation is generated. It is easy to see that this does not change the

solutions to the problem, since this corresponds to subtracting an identical quantity

from both sides of the diophantine equation. Common operands are removed to

make the solution process more efficient; fewer products on each side of the

diophantine equation means fewer solutions that need to be examined to calculate the

basis set of solutions. In statement (4) of the pseudo-code, a call is made to a

function that solves the diophantine equation for its basis set.

Stickel gives a proof of the correctness and completeness of his restricted AC

unification algorithm by proving that the diophantine process is correct and complete,

that is, that the set of solutions to the diophantine equation is exactly the set which

can be produced from the basis set of solutions.

www.manaraa.com

30

AC-UNIFY-VO(Term,, Term,);
begin

if Term,.root = Term2.root
then begin

NewTerm,: = FLATTEN(Term,); (1)
NewTerm, : = FLATTEN(Term2); (2)
remove arguments common to NewTerm,and NewTerm2; (3)
Equation : = diophantine equation created from

NewTerm, and NewTerm2;
Basis : = basis solution set for Equation; (4)
BaseUnifier := EmptySet;
for i : = 1 to | Basis |

Unifier := Unifier + v,, BasisTerm,,
where v, is the itk leftmost variable in Equation,
and BasisTerm, is the i,h column of Basis;

UnifierSet : = EmptySet;
for a e the power set of {z, *- <j>, ..., *- <f>] begin (5)

Unifier := <roBaseUnifier;
If (Unifier is valid)
then UnifierSet := UnifierSet + Unifier;

end;
retum(UnifierSet);

end
else

/* Term, and Term2 have different AC operators and do not unify */
return(EmptySet);

end;

Notes:
FLATTEN(Term) returns the flattened form of Term.

f igure 4. Stickel's AC unification algorithm for variable-only terms

c. The Generalized Stickel Algorithm.

Stickel's variable-only AC unification algorithm is certainly interesting, but is of

limited utility: Most AC terms in a real application will have an outer operator that

is AC, but the arguments will be terms of different AC operators and/or non-AC

operators. This is exactly the universe in which Stickel's generalized AC unification

algorithm is designed to operate. It assumes, however, the existence of a finite and

www.manaraa.com

31

complete E-unification algorithm for each non-AC equational theory to be

represented.

The core of the generalized algorithm is an idea called variable abstraction.

Variable abstraction is the process of uniformly replacing each operand of a term by a

new variable (one that does not appear in the term), and forming a set of

substitutions, called an abstraction s e t , in which each pair consists of one of the new

variables and the operand that it replaces in the original term.

Example 3.8: Let / and g be AC operators, and h be a null-E operator. The variable

abstraction of the term s =ftg(w, a), b, h(x), y) is a new term,

s' = A xi> *2. *3, y),

and its abstraction set is

(*i <- g(w, a), x2 <- b, <- h(x)}.

The original term can be obtained by applying the abstraction set to the variable

abstraction of the term. Thus, the variable abstraction is a generalization of the

original term. The original term should be flattened before it is abstracted (that is,

flattened with respect to the outer AC operator of the term). Thus, the variable

abstractions of a pair of AC terms will be a pair of flattened, variable-only AC terms,

which can then be unified using Stickel's restricted unification algorithm.

However, there is another step to complete the generalized AC unification

algorithm. Each unifier of the two abstracted terms must then be unified with the

abstraction set, for the latter represents a set of constraints on the values that the

new variables may take on in each unifier. This means that in order for a unifier of

the variable abstractions to lead to one or a set of unifiers of the original AC terms,

the values assigned to each new variable in the abstraction set must unify with their

respective assigned values in the unifiers. Each such set of substitutions that

www.manaraa.com

32

simultaneously unifies the pair of abstracted terms and the value pair for each new

variable is thus a unifier of the original AC terms.

The pseudo-code for Stickel's generalized AC unification algorithm is presented

in figure 5. In statements (1) and (2) the input terms are flattened, then abstracted.

In statements (3) and (4), recursive calls are made to unify the two values assigned to

a new variable, x\ note that <t(jc) will be the value assigned to x in the unifier, ct, of

the abstracted terms. The partially built unifier, 6, is passed into the next level of

recursion so that it may be updated at that level, also. The parameter PartialUnifier

is given an initial value equal to the identity unifier. The algorithm may return a

sizable set of unifiers, especially if the unification of value pairs from the variable

abstraction unifier and the abstraction set requires the recursive invocation of the

algorithm, as is the case when the two values are terms of a common AC operator.

Stickel only proved that the generalized algorithm terminates, is correct, and is

complete for a subclass of general AC terms. However, the proof of these properties

for the entire class of general AC terms has since been provided by Fages [Fa84].

Example 3.9: Let / be an AC operator and h be a null-E operator. Further, let

s = /(m, v, b) and t =J[h(x, a), y) be terms. The variable abstractions of these terms

are

.s' =J[u, v, *,) and

^ = A *2, y \

and the abstraction set is

0 = {*, <- /i(jr, a), x2 «- b).

The unification of s' and f yields a set, E, of 25 unifiers. When rectified with the

values assigned to the new variables, x { and x2, in the abstraction set, one obtains a

complete set of unifiers for j and t:

{u<r-h{x, a), y+-/Lv, b)},

{v<-h(x, a), y+-/tu> *)}.

www.manaraa.com

{v *~AZ2. h(x, a)),y+-J[z2, u, b)}, and

{u+-J[zl%h{x, a)), y «-/(>„ v, b)}.

33

AC-UNIFY(Termj, Term2, Partial Unifier);
begin

NewTerm,: = ABSTRACT(FLATTEN(Term,»; (1)
NewTerm,: = ABSTRACT(FLATTEN(Term2)); (2)
AbstractSet : = the abstraction set from the previous two statements;
AbstractUnifiers : = AC-UNIFY-VO(NewTerm,, NewTerm2);
if AbstractUnifiers exist
then begin

FinalUnifiers : = {PartialUnifier};
for a e AbstractUnifiers

for j c *— / e AbstractSet begin
Unifiers := EmptySet;
for 6 e FinalUnifiers

if (a(jc).root is AC) and (<r(/).root is AC)
then Unifers := Unifiers U AC-UNIFY(<j(jc), o(t), $) (3)
else Unifers := Unifiers U UNIFY(a(x), o(t), 6)\ (4)

FinalUnifiers : = Unifiers;
end;

end
else

/* There are no unifiers of Term, and Term2 */
FinalUnifiers : = EmptySet;

retum(FinalU nifiers);
end;

Notes:
FLATTENf Term) returns the flattened form of Term.
ABSTRACT {Term) returns a variable abstraction of Term.
UNlFY(7erm,, Terrrij, Partial Unifier) is a recursive form of

Robinson's unification algorithm.

Figure 5. Stickel's generalized AC unification algorithm

d. The Christian-Lincoln AC Algorithm.

Stickel's AC unification algorithm and its derivatives (for example, ACI

unification) can be very inefficient: Many potential unifiers are generated and then

thrown out because they violate the constraints of the problem. However, Christian

and Lincoln have developed an algorithm for unifying linear pairs of AC terms

www.manaraa.com

34

[CX88]. A linear pair o f AC terms is a pair of terms in which each variable occurs

only once. The algorithm is based upon Stickel's algorithm and reduces the run time,

for this class of terms, by a factor of 3 to 4.

Christian and Lincoln observed that when a linear pair of AC terms is

abstracted, the resulting pair will also be linear. They also observed that all

coefficients in the diophantine equation corresponding to a linear pair of terms will

have a value of 1. This means that the basis set of solutions for the equation will

consist of only those solutions in which exactly one variable on each side of the

solution has a value of 1, and all others have a value of 0. With such a regular

pattern of solutions in the basis, we do not have to go through the costly process of

solving the diophantine equation. Rather, a set of solutions matching this pattern

can be quickly generated. Since there are exactly two variables in each solution of

the basis that have non-zero values, the basis can be represented as a matrix. Table

II shows the basis and the matrix for the diophantine equation,

Jft + X , -I- *3 T x4 + y 2 + .y3 + y 4,

as presented by Christian and Lincoln. Table III shows the matrix representation of

the basis of table II. Before variable abstraction, each AC term to be unified is

sorted in the following order: constants, terms, and then variables. The basis matrix

can then be divided into nine regions, as shown in table IV. By performing some

computationally simple analyses on the entries within each region, the valid unifiers

can be generated from the matrix. For example, as seen in table IV, the introduced

variables in the constant/constant region of the matrix must be set to 0, since a value

of 1 would mean the unification of a constant with a different constant. (Remember,

arguments common to both terms to be unified are removed before variable

abstraction takes place.) A similar argument shows that the introduced variables in

the constant/term and term/constant regions must also be set to 0.

www.manaraa.com

35

Table II. BASIS SET PRESENTED BY CHRISTIAN AND LINCOLN.

*1 *2 *3 *4 y \ y 2 y 3 y •
Introduced

Variable

0 0 0 1 0 0 0 i z,
0 0 0 1 0 0 1 0 *2
0 0 0 1 0 1 0 0 z3
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 ZS
0 0 1 0 0 0 1 0 Z 6
0 0 1 0 0 1 0 0 z7
0 0 1 0 1 0 0 0 Z*

0 1 0 0 0 0 0 1 z9
0 1 0 0 0 0 1 0 Zio
0 1 0 0 0 1 0 0 zn
0 1 0 0 1 0 0 0 Z l2
1 0 0 0 0 0 0 1 Z13
1 0 0 0 0 0 1 0 Zl4
1 0 0 0 0 1 0 0 Zis
1 0 0 0 1 0 0 0 Z|6

Table III. THE MATRIX REPRESENTATION OF A BASIS.

X i *2 *3 ^4
y i Z,.i zi a zu Zl,4
y 2 Z2.I z 2 a Z2.3 Z2.4
y * Z3.1 Z3̂ Z3̂4
y * Z4.1 z *j Z4rJ ZM

Table IV. THE REGIONS OF A BASIS MATRIX.

C T V
c 0 0 • • •
T 0 ... • • •
V

www.manaraa.com

36

e. An ACI Unification Algorithm.

The diophantine process, and thus the AC unification algorithms of Stickel, can

be easily adapted to unify terms containing operators that exhibit the properties of

associativity, commutativity, and identity (ACI). Recall that in the diophantine

process associated with flattened, variable-only AC terms, the general form of a

solution is the sum of some multiple (zero or more) of each of the solutions in the

basis set,

zxbx + z2b2 + ••• zkbk.

Also recall that the solution corresponding to each potential unifier of the AC terms

is obtained by setting a subset of the coefficients, z,, ..., zk, in the general solution to

a value of 0. Any of these solutions which would cause one of the equation variables

to be assigned a value of 0 is discarded, since it would cause the same variable in the

unifier of the terms to be assigned the identity term, or null term, which is not

possible in an AC theory.

However, these troublesome solutions are no problem when dealing with an ACI

equational theory. Since variables may be assigned an identity value and "disappear"

from a term, the solutions discarded as invalid for an AC theory are valid for an ACI

theory. The general solution to the diophantine equation, given above, corresponds

to a unifier, <r0, of the pair of ACI terms. It can be seen that any solution obtained

by setting to 0 some of the coefficients in the general solution corresponds to a unifier

obtained by applying a subset of

{z,«- e, ..., zk 4- e)

to a0. This means that any unifier of the ACI terms can be obtained by composing

some subset of the above set of substitutions with a0. Thus, <r0, the unifier

corresponding to the general solution to the diophantine equation, is the single most

general unifier of a pair of flattened, variable-only ACI terms.

www.manaraa.com

37

Stickel's restricted AC unification algorithm, presented in figure 4, can be

transformed into a function ACI-lJNIFY-VO(7>rm,, Term2) which unifies a pair of

variable-only ACI terms, Termx and Term2, by deleting the code of the final "for" loop

and returning the value of the variable Base Unifier as the value of the function.

Stickel's generalized AC unification algorithm, presented in figure 5, can be changed

into a generalized ACI unification algorithm, ACI-UNIFY(7>/m„ Term2), by

replacing the call to AC I-UNI FY(Termu Term2) with a call to

ACl-UNIFY-VO(Term,, Term2).

4. The Yelick Model of E-Unification.

Given two equational theories, A and B, for which correct and complete

li-unification algorithms are known, the problem of finding an E-unification

algorithm for the combined equational theory, A U B, is not a trivial task. However,

Yelick CYe85] has shown that for confined regular equational theories, a top-level

program can be written to invoke the individual, finite, complete, recursive

E-unification algorithms and return a complete and correct set of unifiers for terms

containing operators from some or all of the involved equational theories.

A non-confining equation is one of the form j c = /, where j t is a variable and / is a

non-variable term. An equational theory containing no non-confining equations is a

confined theory. An example of a non-confining equation is one defining an identity

element, e, for an operator, /:

f ix , e) = x.

An equational theory is regular if , for each equation, s = /, in the definition of the

theory, vars(s) = vars(/).

www.manaraa.com

38

Yelick's model of unification is the basis for the E-unification algorithm used in

this research. The pseudo-code for this implementation is given in chapter 5.

5. Computational Complexities of E-unification.

Kapur and Narendran CA7V86.1] gathered complexity statistics for quite a

variety of unification algorithms. The complexities for unification corresponding to

some commonly occurring equational theories appear in table V, along with the

references in which the complexities first appeared.

Table V. E-UNIFICATION COMPLEXITIES OF SOME COMMONLY USED

THEORIES.

Equational Theory Unification Complexity Reference

Null-E Linear
C NP-Complete > 7 9]
A Decidable Afa77]
AC NP-Complete A7V86.2]
ACI NP-Complete AT/V86.2]
ACId NP-Complete [AfiV86.2]

www.manaraa.com

39

IV. A REVIEW OF COMPLETION PROCEDURES

It is common practice for human mathematicians to rewrite a mathematical

term into another term to which it is equal. The simplification of an algebraic

expression and the solution of a trigonometric identity are two examples in which

terms are iteratively changed through a sequence of rewrites until a goal is reached

(those goals being the achievement of a normal form for algebraic simplification and

the discovery of identical terms for the solution of an identity). Whether implicitly or

explicitly stated, rewriting is performed via a set of rewrite rules, or identities, each of

which have the form tx = t2.

However, when term rewriting is automated and a finite set of identities is used

as the set of rewrite rules, problems are encountered. One problem is that, if a term

is rewritten using some rule in a left-to-right manner, that is, replacing a term

matching the form of the left-hand side of the rule with one matching the right-hand

side of the rule, the system may immediately rewrite the result back to the original

term using the same rule in a right-to-left application. If this were to continue, the

result would be an infinite sequence of rewrites oscillating between a pair of terms.

Another problem arises because of the presence of a rule in which the left-hand side

of the rule is a term contained as a proper subterm of the right-hand side (or vice

versa). If such a rule is applied in a left-to-right manner, the resulting term is more

complex than the original, but contains an instance of the original. The same rule

could be applied repeatedly to each resultant term, leading to an infinite sequence of

terms, each more complex than the one from which it was rewritten.

Example 4.1: Let s=J[f[a , a), e) be a term. Applying the rule describing

associativity for /,

AA*, >0. z) =A*. A y, z)).

www.manaraa.com

40

iteratively to 5 in a left-to-right then right-to-left manner results in the looping,

infinite sequence of rewritten terms,

A<*> J[a, *)), AA<*> a \ e), J[a, f a , e)),

Applying a rewrite rule describing an identity element, e, for f

A x , e) = x,

repeatedly to 5 in a right-to-left manner results in an infinite sequence of rewritten

terms,

ywo,«), <0, <?), yw/w«, a), <0, <0, <0, «)»<0, <0, <0, <0, - •

These problems can be overcome, however, by transforming the set of identities

used as rewrite rules into a set of reductions. A reduction is an ordered pair of terms

of the form A -* p, such that A — p is an identity and A is, in some sense, simpler than

p. A reduction can be used to rewrite a term, /, only if there exists a match between

A and ///, that is, if there exists a set of substitutions, <7 , such that a(A.) is equal to the

subterm of / at some position, /edom(/). The rewritten term is /[# <- <r(p)], the

result of replacing subterm t/i with o(p). The relation specifies the rewriting of one

term to another by a single application of a reduction, r, to the first term. Thus,

/ -+ t' specifics that one application of r rewrites term / into term /'. In a like fashion,

the relation -+ specifies the rewriting of one term to another by a single application of

a reduction from a set of reductions, R. The transitive closures of -» and —► are the
' R

relations -»+ and -*+, respectively. Likewise, their reflexive, transitive closures are ther R
relations —►* and —►*. A term which cannot be rewritten by any reduction in a set of

f R

reductions R is said to be irreducible with respect to R. An irreducible form or

terminal form of a term, /, with respect to R, written as /],*, is an irreducible term, t*,

such that / -*Y.
R

Example 4.2: Let s = A A a » a)* e)- Applying a reduction,

M .x, >), 2) fly , 2)),

formed from the first rule of example 4.1, to s results in the term

www.manaraa.com

41

s' = A a , A ° , «)).

which is irreducible with respect to the reduction; so, the oscillation displayed in

example 4.1 has disappeared. Applying a second reduction,

J[x, e) = e,

formed from the second rule of example 4.1, to s produces the term

s" =A°y a)y

which is irreducible with respect to the second reduction; thus the second infinite

sequence that was seen in example 4.1 has been eliminated.

A. COMPLETE SETS OF REDUCTIONS

The word problem is that of deciding whether or not two terms are provably

equal with respect to some relation. In general, the word problem is undecidable

However, the word problem can be easily solved with respect to a relation

if there exists, for that relation, a finite complete set of reductions.

Definition 4.1: A set of reductions is a complete set o f reductions if each term has

exactly one irreducible term and no distinct irreducible terms are equivalent, with

respect to the set of reductions.

The first restriction of this definition is actually a consequence of the second;

since distinct irreducible terms are not equivalent, and all new terms produced by

reducing a term are considered equivalent, there can be only one irreducible term

produced.

www.manaraa.com

42

B. THE KNUTH-BENDIX COMPLETION PROCEDURE

In 1970, Knuth and Bendix published a pioneering paper in the study of complete sets

of reductions _KB10~\. In their paper, they investigated the conditions under which

a set of reductions is complete and, as a consequence, derived an algorithm for testing

the completeness of a set of reductions, and extended it to a procedure for completing

an incomplete set of reductions (in many cases).

1. The Conditions for a Complete Set of Reductions.

In order to meet the conditions for completeness specified in definition 4.1, a set

of reductions must exhibit the finite termination property and be a Church-Rosser set

of rewrite rules, as explained below.

a. The Finite Termination Property.

A set of reductions, R, has the finite termination property if there exists no

infinite chain of rewrites,

/ == /0 r, .
R R R

If R has this property, then the process of rewriting a term to an irreducible term,

with respect to R, is a finite process. Every term will rewrite to at least one

irreducible term.

To guarantee the finite termination property for a set of reductions, a

well-founded partial order on the set of all terms must be found. A well-founded

partial order (wpo) is a partial order which has no infinitely descending chains. The

wpo will be based upon a weighting function, which associates with each term a

measure of its complexity. The value of the weighting function for a term, /, is

designated as weight(r). The well-founded partial order, > , relative to the weighting

function, is defined as follows for the set of all terms, T:

www.manaraa.com

43

(1) (Vs, t e T) If weight(s) > weight(/), then s > t.

(2) (Vs, t e T) If weight(s) = weight(r), then s ^ /, that is, s and / are not related

by the wpo >-.

There are some restrictions that must be met by any weighting function chosen.

For a weighting function to be applicable, the following conditions must hold:

(1) There must not be an infinite set of terms, {r„ t2, /3, ...}, such that

weighty,) > weight^) > weight(r3) > — This insures that >■ is indeed a wpo.

(2) (Vs, t e T) If weight(s) > weight(/) and a is a set of substitutions, then

weight(a(s)) > weight(<r(/)), that is, term ordering must be preserved by

substitution.

(3) (Vs, /„ t2 e T) If weight^) > weight(/2), then it must be true that

(Vi e dom(s)) weight(s[/ +- r,]) > weight(s[/ <— r2]), that is, term ordering

must be preserved by subterm replacement.

(4) (VA -> p e R) weight(^) > weight(p), that is, X > p.

b. The Church-Rosser Property.

A finite set of reductions possessing the finite termination property alone is

sufficient to solve the word problem, with respect to the set of reductions. Every

term has a finite number of subterms, so there are only a finite number of ways to

rewrite a given term by a single reduction application. Due to the finite termination

property, every possible rewrite sequence is finite in length. Therefore, a complete

rewrite tree can be developed for any given term. Branches of the tree correspond to

rewriting sequences, and the leaves of the tree correspond to all irreducible terms that

can be produced from the root term. It can be decided, then, whether or not two

terms are equivalent, with respect to the set of reductions, by generating the rewrite

tree for each of the terms and then searching the trees for a common irreducible term.

www.manaraa.com

44

However, if the branching factor or depth of the trees is very large, this will be a

very expensive search process. This is the reason for adding the requirement of the

Church-Rosser property to a set of reductions.

Definition 4.2: A set of rewrite rules is Church-Rosser if terms that are equivalent,

with respect to the set of rules, have a common rewriting.

Note that the definition of the Church-Rosser property does not state that the

common rewriting must be irreducible; thus, it could be that the common rewriting

can be further rewritten several ways into several different terms. These terms,

however, are equivalent and must, therefore, have a common rewriting. This

fluctuating behavior could continue indefinitely if not for the finite termination

property, which requires that each rewriting sequence halts. Because the set is

Church-Rosser, there must exist a common irreducible term at which all rewriting

sequences halt. Therefore, it can be seen that a Church-Rosser set of reductions

possessing the finite termination property does indeed satisfy the definition of a

complete set of reductions.

c. The Lattice Condition.

The finite termination property is assured by the selection of a term weighting

function that produces a well-founded partial order on terms and meets the

requirements specified earlier. But how is a set of reductions shown to be

Church-Rosser? The proof is based on the fact that a set of reductions is

Church-Rosser if it has the finite termination property and is confluent.

Definition 4.3: A set of reductions, R , is confluent if, for all terms t, /„ and *2» where

/ —►*/, and /-+*/,, there exists a term, such that /, —►V and t2—>Y, that is, if all
R R R R

rewritten forms of a given term have a common rewriting.

www.manaraa.com

45

Confluence is pictorially described in figure 6(a). Even though the finite

termination property guarantees that a term has a finite rewrite tree, it can be difficult

to prove that a set of reductions is confluent. Since t is rewritten into terms /, and t2

using the relation -V, the set of terms which take on the roles of /, and t2 could be

quite large, and the pairwise testing of these terms could be expensive.

Fortunately, it is not necessary to prove confluence in order to show a set of

reductions to be Church-Rosser. It has also been shown that a set of reductions is

confluent if it has the finite termination property and is locally confluent.

Definition 4.4: A set of reductions R is locally confluent if, for all terms r, /,, and /2,

where / -► t. and t —*■ there exists a term, f , such that r. and t2 — that is, if
R R R R

all terms derived from a given term by a single application of a reduction have a

common rewriting.

Local confluence is diagrammed in figure 6(b). The proof that a set is locally

confluent is easier than the proof that the set is confluent since, in general, the

number of rewritten terms derivable from a term by a single reduction application will

be fewer than the number of those derivable from the same term by any number of

reduction applications.

The relationships between complete, Church-Rosser, confluent, and locally

confluent sets of reductions are summarized in theorem 4.1.

Theorem 4.1: The following statements about a set R of reductions possessing the

finite termination property are equivalent:

(1) R is a complete set of reductions.

(2) R is Church-Rosser and has the finite termination property.

(3) R is confluent and has the finite termination property.

(4) R is locally confluent and has the finite termination property.

www.manaraa.com

46

Thus, to show that a set of reductions, R , is a complete set of reductions, one

needs only to show that R is a locally confluent set and possesses the finite

termination property. Knuth and Bendix call the local confluence property the lattice

condition. It is the lattice condition upon which the superposition process, that is, the

Knuth-Bendix test for completeness, is based.

2. The Test for Completeness.

Testing whether or not local confluence holds for each term, with respect to a

finite set of reductions possessing the finite termination property, constitutes a test

for the local confluence of the set of reductions and, consequently, a test for the

completeness of the set. However, it is not a viable test; although the rewrite tree

associated with each term is finite, there are an infinite set of terms to be tested! In

their paper, Knuth and Bendix described a procedure for deciding the local confluence

of a set of reductions that avoids this problem. It is called the superposition process.

and it needs only to test the finite set of left-hand terms of the reductions for local

confluence. It will now be shown that proving local confluence by the superposition

www.manaraa.com

47

process is sufficient to prove local confluence for all terms, with respect to the set of

reductions.

Let t be an arbitrary term to be tested for local confluence. Referring to figure

6(b), local confluence will hold for / only if every pair of terms, tx and t2, produced by

a single application to t of a reduction will conflate, that is, reduce to a common

irreducible term. Let r, = Ax -* px and r2 = X2 -*• p2 be (possibly identical) members of

the set of reductions, R, such that / —► /, and t -> tv This implies that there exist
rl r2

matches, ax and a2, and positions, /, j e dom(f), such that t/i — ox(Ax) and t/j = cr2(22).

One of three relationships must hold between subterms tji and t/j:

(1) t/i and t/j are disjoint subterms of /. In this case, tx and t2 trivially and

unconditionally conflate, since the two rewrites do not interfere with one

another in any way, that is, it will always be true that t -> tx~* t' and
r l r2

t-*t> -*S.
r2 rl

(2) t/i and t/j overlap, but not completely. This case is impossible, which is

apparent from the tree structure of terms.

(3) t/i and t/j overlap completely, that is, t/i is a subterm of t/j, or vice versa.

This is the only one of the three cases which must be further investigated.

We shall assume, without loss of generality, that t/j is a subterm of t/i, that is,

that there exists a position, k , such that j = i.k. We shall also assume, without loss of

generality, that rx and r2 are variable disjoint, implying that lvars(cr1) and lvars(<72) are

also variable disjoint.

Since t/i = ax{Xj) and t/j = t/i.k = o2(X2), it follows that ox(Xx)/k = o2(X2). It can

also be shown that there exists some position, k ' e dom(2,), such that

ox(Xx)/k = ox(Xxlk’).

www.manaraa.com

48

Because r, and r2 are variable disjoint (as are lvars(cr,) and lvars(<r2)), it will also

be true that ox(XJk') = axoo2{XJk') and cr2(^2) = oxoo2(X2). Thus,

G\oo2{XJk') = crx°o2(X2), which makes ox°o2 a unifier of XJk' and X2. Therefore, there

must exist a most general unifier, 0, for XJk' and X2. The forms of the rewritten

terms, and t2, are

*i = t_i *- ox{px)~\ and

t2 = t_i <- ox(Xx{_k' 4- <x2(p2)])].

Using the facts stated above, we can replace these by the equivalent forms,

t\ = t_i *- 0 \°o2{pJ~\ and

t2 — if/ *— oxoo2{X^_k *— p2j|)]-

The mgu, 0, is more general than the unifier <7,°<j2, so we can replace the forms of /,

and t2 once more by the forms

r, = /[,'«- 0(p,)] and

It can be seen that these last forms of r, and t2 are identical, with the exception

of the terms replacing subterm t/i. So the problem of deciding whether or not /, and

t2 conflate is simplified to deciding whether or not t j i and t2/i conflate. Thus, a term,

/, is locally confluent if all pairs of terms,

< 0(Pi)» 9(Xx_k' 4- p2]) > ,

conflate, where A, -♦ p, and X2 -* p2 are reductions, k' e dom(A,), and 8(Xx/k') = d(X2).

Pairs of the form < 0(Pi)> 0 (^ i <— p2]) > are called critical pairs. (This

terminology was not actually used by Knuth and Bendix, but was introduced later.)

The process of forming and reducing all critical pairs is called the superposition

process. Note that the same set of critical pairs is formed, regardless of the term

being tested for local confluence. Thus, performing the superposition process for one

term is equivalent to performing it for all terms. Therefore, the problem of testing an

infinite number of terms is reduced to testing the finite set of left-hand sides of the

www.manaraa.com

49

reductions from the set of reductions. This constitutes a decision procedure for the

completeness of a set of reductions.

3. The Completion Procedure.

Knuth and Bendix extended this completeness decision procedure to one for

completing an incomplete set of reductions, as pictured in the pseudo-code of figure

7. The input to the procedure is a set of equations, S, that is formed into the initial

set of reductions, R. Note in statement (1) that only the members of the strict

domain (sdom) of Xx are unified with X2, rather than the entire domain (dom) of Xx.

This is because those critical pairs formed from the variable subterms of Xx trivially

conflate.

The critical pairs generated from the set of reductions are iteratively produced.

As each critical pair is calculated, its two component terms are reduced to irreducible

forms, /, and /2, using R. (Sec statements (2) and (3) in the pseudo-code.) If /, = /2,

then the critical pair has conflated, and the next critical pair is calculated and

processed. If all critical pairs conflate, then the set R is a complete set of reductions,

and a success status is returned along with R.

If, however, tx # r2, then the pair of irreducible terms needs to be added as a

reduction to R to make it "more complete." If weighty,) = weight(r2), then r, and t2 are

not related by the well-founded partial order on terms, >-; thus, the pair cannot be

ordered into a reduction, and the procedure must return a failure status. But, if

weighty,) > weight(r2) or weighty,) < weight(/2), then the reduction tx —► t2 or t2 —> tx,

respectively, is added to R. After the new reduction is added, inter-reduction

simplification takes place, in which the two terms comprising each reduction in R are

reduced to irreducible form, with respect to the other reductions in the set. If a

reduction is reduced to a pair of identical terms, it is dropped from R. Finally, after

www.manaraa.com

50

inter-reduction simplification has been completed, the entire completion process must

be started again, using the newly updated set, R.

If all critical pairs generated from any version of R conflate, then that version is

a complete set of reductions equivalent to S. However, there is also a possibility that

the completion procedure will never halt; some complete sets of reductions are infinite

in size. An example of one such complete set of reductions is given in the discussion

of the work of Peterson and Stickel.

4. Failure-Resistance.

Several years after the development of the Knuth-Bendix completion procedure,

Forgaard and Guttag conceived the notion of a failure-resistant completion procedure

[FG84]. Their method does not always prevent the completion procedure from

failing, but it can in some cases. It is based on a surprisingly simple idea. When a

critical pair based on a surprisingly simple idea. In the original Knuth-Bendix

procedure, when a critical pair is reduced to two distinct terms that have identical

weights, the procedure halts with failure. In the failure-resistant Knuth-Bendix

procedure, such a critical pair is shelved, or put aside, and work continues on the next

critical pair. When all critical pairs have been processed, those that were shelved are

reprocessed, since a reduction added to the set of reductions after a shelved pair was

set aside may now enable it to be conflated or ordered into a reduction; if not, the

pair will be reshelved. This iterative process continues either until all shelved pairs

have been successfully handled, producing a complete set of reductions, or until no

shelved pair can be conflated or ordered, leading to failure of the procedure.

www.manaraa.com

51

KB-COMPLETION(S);
begin

R : = the set of reductions formed from the equations of S;
repeat

Status := SUCCESS;
for (Vr, = At -> p, e R)

for (Vr2 = X2-> p2e R)
for (V/e sdom(î)) begin (1)

d : = UNIFYUJi, X2);
if $ exists
then begin

/,: = REDUCE*^.), R); (2)
t2: = REDUCE*(0(J,L/ <- p j), R)\ (3)
case

tx = t2:
I* Successful Conflation */ ;

weighty,) > weight(r2): begin
add r, -> t2 to R\
inter-reduce R\
Status : = LOOP;
exit outer "for" loop;

end;
weight^,) < weight(/2): begin

add t2 -> r, to R\
inter-reduce R\
Status := LOOP;
exit outer "for" loop;

end;
weight^) = weight(r2): begin

Status := FAILURE;
exit outer "for" loop;

end;
end;

end;
end;

until (Status = SUCCESS) or (Status = FAILURE);
retum(Status, R);

end;

Notes:
REDUCE*(Term, Reductions) returns an irreducible form of Term,

with respect to Reductions.
UNIFY(Term„ TermJ is Robinson's unification algorithm for a

pair of terms, Term, and Ternij.

Figure 7. The Knuth-Bendix completion procedure

www.manaraa.com

52

C. THE PETERSON-STICKEL E-COMPLETION PROCEDURE

Although the Knuth-Bendix completion procedure is certainly interesting, it has

some serious limitations. For example, two axioms which are common to many

equational theories are those of associativity and commutativity. But, the

Knuth-Bendix procedure cannot properly address either of them without destroying

the finite termination property of the set of reductions. A commutativity axiom, such

asyfc, y) = A y, x)> quite obviously cannot be ordered into a reduction, and will cause

the completion procedure to fail. An axiom of associativity, such as

AAx, y), z) = A X, f(y, z)), can be transformed into a reduction,

A A X, y), z) —*J[x, J{y, z)). But the Knuth-Bendix procedure is not totally general in

its treatment of associativity as a reduction, and can lead to non-termination of the

procedure. The following example, 4.3, was given by Peterson and Stickel.

Example 4.3: Let the set of equations input to the Knuth-Bendix completion

procedure be the equations,

AAx, y), Z) =J[x, f(y, z)), (i)
f a , b) = b, and (2)

f a , A x, b)) = A x, b). (3)

The Knuth-Bendix procedure will produce an infinite set of reductions,

AAx, y), z) -+A*, Ay, z)),

A<*, b)-+ bt

Aa, A x , b)) -+J[x, b),

A<*, A x . A x 0, b))) -+Ax, A x 0, b)),

A x, A x o, A x i, £)))) -+Ax, A xo, Axi, b))),

www.manaraa.com

53

However, Peterson and Stickel observed that if equation (1), the associativity axiom

for operator / , is removed from the set of equations and / is assumed to be an

associative operator, then the two reductions,

J[a, b) -* b and

J[a, J[x, b)) b),

constitute a complete set of reductions for the set containing equation^ (2) and (3).

This observation was used by Peterson and Stickel to develop extensions of the

Knuth-Bendix procedures. The set of equations, S, input to the Peterson-Stickel

procedure is divided into two sets, E and R. The set £ is a subset of S for which

there exists a finite, complete E-unification algorithm. All other members of S are

ordered into reductions to form R. There is a restriction on the members of £,

however: All reductions in E must be linear, collapse-free equations, that is, every

variable occurring in an equation must appear exactly twice, once in each side of the

equation.

In addition to the necessity of an E-unification algorithm for the set £, an

E-matching algorithm and an algorithm for proving E-equality, with respect to £, are

also needed in order to implement an E-completeness decision procedure or an

E-completion procedure. Peterson and Stickel showed that the existence of an

E-unification algorithm for E implies the existence of the other two algorithms.

1. E-Complete Sets of Reductions.

An equational theory, /:, partitions the set of all terms into equivalence classes.

Further, since the equations are linear and collapse-free, the equivalence classes are

finite in size. A new relation, -+ , which is equivalent to the composition of relations,

= ° ~r ° 7 * be used to specify the rewriting of any member of one equivalence

class to any member of another. The transitive closure and reflexive, transitive

www.manaraa.com

54

closure of —► are the relations, -►+ and ->*, respectively. The relation -* may also be
R/E R/E R/E R/E

written as R/E, and its closures written as R/E+, and R/E7. The definition given

previously for complete sets of reductions can now be extended to provide fbr a

non-empty equational theory.

Definition 4.5: Let E be a linear, collapse-free equational theory. A set of reductions

R is an Incomplete set o f reductions if, for all terms s and / which are equivalent with

respect to R, s -+Y, t -*Y, and s' = f .
R/E RIE E

In a manner similar to that used by Knuth and Bendix, it can be proven that a

set of reductions R is E-complete if and only if all critical pairs of the members of R

conflate and R is an E-compatible set of reductions. The critical pairs used to test for

E-completeness have the same form as those used to test for standard completeness:

< 0{px), #(>liE/ <-p2]) > • However, it is almost certain that the number of critical

pairs will be greater in the E-completeness test. This is because the null-E unification

of each pair AJi and A2 in the completeness test produces, at most, one most general

unifier, and thus, one critical pair. However, the E-unification algorithm used in the

I'-complcteness test returns a (finite) set of maximally general unifiers, each

corresponding to a critical pair. This fact once again emphasizes the need for a

minimal E-unification algorithm, or at least one that is as minimal as possible.

2. E-compatibility.

The second requirement for E-completeness is the E-compatibility of the set of

reductions. This property is defined as follows.

Definition 4.6: Let £ be a linear, collapse-free equational theory and R be a set of

reductions. Assume, without loss of generality, that the elements of £ U R arc

variable disjoint. If, for all /= r e E and 2, -*• p, e R such that i e sdom(/), i # e, and

l/i and Ax are E-unifiable, there exists a reduction A2-> p2e R and a set of

www.manaraa.com

55

substitutions a such that /[/<- i ,] = and /[/«- p ,] ->'o(p2), then R is
E R/ E

E-compatible.

The goal of Peterson and Stickel was to develop an E-complcteness decision

procedure and E-completion procedure for AC theories. An AC equational theory is

one containing both an associativity axiom and a commutativity axiom for a set of

operators. In order to insure E-compatibility for a set R, of reductions, with respect

to an AC equational theory, they developed the concept of reduction extension.

Definition 4.7: Let r = A —> p e R, such that Lroot = / is an AC operator. The AC

extension o f r is the reduction K4C = f[x , Ax) —*J[x, p j, where jc^vars(r). The AC

extension o f R is the set R\c = {r*AC | r e R a A.root is an AC operator} U R.

It can be proven that if' E is an AC theory and R is a set of reductions, then R\c

is E-compatible. Therefore, if E is an AC theory, the E-completcness of a set of

reductions, R , possessing the finite termination property can be decided solely by

checking for the conflation of all critical pairs produced from the reductions.

3. The AC Completion Procedure.

The Peterson-Stickel E-completeness decision procedure can be extended to an

E-completeness procedure in much the same way that the Knuth-Bendix completeness

decision procedure was extended. The pseudo-code for this procedure is given in

figure 8.

www.manaraa.com

56

PS-COMPLETION(S);
begin

Reductions : = EmptySet;
Pairs := EmptySet;
Eqs : = S;
while ((Pairs # EmptySet) or (Eqs EmptySet)) do begin

if Eqs = EmptySet
then MAKE-CRITICAL-PAIRS(Pairs, Eqs);
else begin

< s, t > : — the member of Eqs with the Smallest weight;
Eqs:= Eqs — { < s, t > };
s, := REDUCE*(s, Reductions);
t, RHI)lJCE*(t, Reductions);
if s, = t,
then /* Successful conflation */
else begin

ADD-REDUCTION(Si, t,, Reductions, Pairs);
INTER-REDUCE(Reductions, Pairs);

end;
end;

end;
retum(Reductions);

end;

Notes:
REDUCE*(7erm, Reductions) returns an irreducible form of Term,

with respect to Reductions.

F ig u re 8a. T h e P e te rso n -S tic k e l A C c o m p le tio n p ro c e d u re , p a r t 1 o f 3.

www.manaraa.com

57

ADD-REDUCTION(s, t, Reductions, Pairs);
begin

ease
>veight(s) > weight(t):

A -* p : = s —► /;
weight(s) < weight(t):

A -*■ p : = t s;
weight(s) = weight(t):

HALT WITH FAILURE;
end;
Reductions := Reductions [j {A —► p};
for f e Reductions

Pairs : = PairslJ {< A -> p, r> , < A-+ p, r*AC> ,
< “ > Pac* r > » ^ * P!io ^ }»

end;

MAKE-CRITICAL-PAIRS(Pairs, Eqs);
begin

{Ax -+ Pi* A2 -+ p2] := the member of Pairs with the smallest value of
weight^,) + weighty);

Pairs := Pairs — (2, —> p„ 22 -> p2);
Eqs : { < a(p,), a{o2) > | n c csu(2„ A2)\

(J { < <r(p,), cr(>t,L/ <— p2]) > | Ax -* p, is not an extension
A / 6 sdom^,) A <7 6 csu(2,//, 22)}

(J{< o(p2), ct(22[/ <- px]) > \ A2 -» p2 is not an extension
a i e sdom(>l2) a a e csu(AJi, A,)};

end;

Figure 8b. The Peterson-Stickel AC completion procedure, part 2 of 3.

The variable Eqs is a list of term pairs which must either conflate or be

transformed into reductions; its initial value is the set of input equations, S. Pairs

contains all reduction pairs that have not yet been through the superposition process,

that is, the generation and attempted conflation of all critical pairs that can be

formed from the pair of reductions. Whenever Eqs has been emptied, it is replenished

by a call to the procedure MAKE-CRITICAL-PAIRS(Pa/r.s, Eqs), which picks a

member of Pairs and stores all critical pairs generated from that member into Eqs. If

Eqs is empty and Pairs is also empty, then all reduction pairs have successfully passed

www.manaraa.com

58

INTER-REDUCE(Reductions, Pairs);
begin

repeat
Status := SUCCESS;
for X -*> p e Reductions begin

Xx := REDUCE*(>i, Reductions — {X -* p});
p, := REDUCE*(p, Reductions — (i -► p});
if (;. * A,) or (p # p,)
then begin

for r e Reductions
Pairs : = Pairs— {<>!-► p, r> , < X -> p, r*AC> ,

^ ^AC P'aCi r > i < J-AC PaC» ^) >
Reductions := Reductions — {X —> p};
ifyt, =p,
then /* Successful conflation */
else begin

ADD-REDUCTION(A„ p„ Reductions, Pairs);
Status : = LOOP;
exit "for" loop;

end;
end;

end;
until Status = SUCCESS;

end;

Figure 8c. The Peterson-Stickel AC completion procedure, part 3 of 3.

through the superposition process, and Reductions is a complete set of reductions

equivalent to the input set of equations, S.

When a reduction is added to Reductions, it is paired with all reductions

(including itself) and their AC extensions, and these pairs are added to Pairs. In a

similar fashion, if a reduction is removed from Reductions during inter-reduction

simplification, all pairs incorporating that reduction or its AC extension are removed

from Pairs.

www.manaraa.com

59

D. THE JOUANNAUD-KIRCHNER EXTENSIONS

The procedures developed by Peterson and Stickel subsume the work of Knuth

and Bendix. In a like manner, the work of Jouannaud and Kirchner [7^86].

subsumes that of Peterson and Stickel, and others. Their work represents no major

stride forward in the study of complete sets of reductions, as did that of Knuth and

Bendix, and Peterson and Stickel. Rather, it is an attempt to "tidy up" and generalize

the work that had come before.

1. Confluence and Local Confluence Revisited.

Jouannaud and Kirchner found that the investigation of E-complete sets of

reductions could be made simpler and more general by replacing the relation, , by

a new relation , - * *, which can be any relation satisfying the inequality ,
r e

The transitive closure and the reflexive, transitive closure of —► are the
* r e ri e re

relations -►+ and -+*, respectively. These relations may be written as RE, RE+, and
Re Re

RE*. Among other things, this permits an easing of the restriction placed on the

equational theory, E, requiring it to be linear and collapse-free, to one simply

requiring that it generate finite equivalence classes.

The properties of Church-Rosser, confluence, and local confluence, which are so

important in the Peterson-Stickel procedures, can be formally restated for

E-completeness in terms of -* .

Definition 4.8: Let R be a set of reductions and let E be an equational theory

defining finite equivalence classes. Let T be the set of all terms.

(1) /? is RE -Church-Rosser modulo E iff (Vs, t, s ', t* e T) s and / are considered

equivalent, s ->Y, and t -*Y imply that s' = t'.
r E r E e

(2) RE is confluent modulo E iff (Vr, /„ t2 e T) /->*/, and / —>'t2 imply that
rE r E

(3/,'. V e T) t, /, ->V, and t
r E rE e

www.manaraa.com

60

(3) RE is locally confluent modulo E with R ifT (V/, t2 e T) t -+ /, and / -► t2
r e r

imply that (3//, t2 e T) /, tx ->*//, and = t2 .
rE r E e

The properties of definitions 4.8.(2) and 4.8.(3) are illustrated in figure 9.

2. Coherence and Local Coherence.

Recall that Peterson and Stickel defined the property of E-compatibility, and

showed it to be a necessary property to insure the E-completeness of a set of

reductions. This property was generalized by Jouannaud and Kirchner into a

property called coherence. As can be seen by comparing confluence in figure 9(a)

with coherence in figure 10(a), these two properties are both instances of the lattice

condition defined by Knuth and Bendix. In fact, just as confluence can be deduced by

proving local confluence, coherence can be inferred from local coherence, pictured in

figure 10(b).

Definition 4.9: Let R be a set of reductions and let E be an equational theory

defining finite equivalence classes. Let T be the set of all terms.

www.manaraa.com

61

(1) RE is coherent modulo E iff (V/, slf t2e T) and t = t2 imply that
r e e

(3//, t2 e T) tx tx ->72'. and tx = t2' .
r e r e e

(2) RE is locally coherent modulo E iff (V/, t2e T) t tx and / -+ t2 imply that

(3//, t2 e T) tx /, ->72', and = t2 .
r E r E E

The relation, -+ , used in definition 4.9.(2) specifics a rewrite performed using a

member of E, rather than a member of R.

An E-terminating set o f reductions, R, modulo E is a set of reductions, R, for

which —> has the finite termination property. With these definitions in place, theoremR/E
4.1 can now be extended from complete sets of reductions to E-complete sets of

reductions.

Theorem 4.2: The following statements about a set, Rt of E-terminating reductions

and an equational theory, £, which defines finite equivalence classes are equivalent:.

(1) R is an I •-complete set of reductions.

(2) R is /££-Church-Rosser modulo E.

(3) RE is confluent modulo E and RE is coherent modulo E.

(4) RE is locally confluent modulo E and RE is locally coherent modulo E .

www.manaraa.com

62

3. Confluence and Coherence Critical Pairs.

Theorem 4.2 states that a proof of local confluence and local coherence

constitutes a decision procedure for the E-completeness of a set of reductions, R. As

shown by Peterson and Stickel, local confluence can be proven by generating and

successfully conflating all critical pairs of reductions from /?, now to be called

confluence critical pairs. Jouannaud and Kirchner prove that local coherence can

likewise be proved by generating and successfully conflating all coherence critical

pairs. A coherence critical pair is formed from an equation, / = r e E \J Ec, and a

reduction, A —► p e R, and has the form < 0(/[i <— p]), Q(r) > , where / e sdom(/),

B e csu(///, A), and Ec = [b = a | a = h e E).

4. Dynamic Extensions.

Peterson and Stickel created an AC extension of each member of R with an AC

left-hand term to insure the E-compatibility, or coherence, property for the AC

completion procedure. Jouannaud and Kirchner introduced a more refined definition

called dynamic extensions; no extensions are added unless absolutely necessary. If an

equation, / = r, and a reduction, A -*• p, fail to cohere, that is, one of their coherence

critical pairs , < 0{l_i <— p]), B(r) > , fails to conflate, then an extended reduction of

the form /[/ <- 2] -* /[/« - p] is added; the procedure then starts over using the

updated set of reductions. The newly added reduction guarantees coherence for the

equation and the reduction from which it was formed. This is a better approach than

that used by Peterson and Stickel, since fewer reductions added to R mean fewer

critical pairs to manipulate.

www.manaraa.com

63

V. IMPLEMENTATION NOTES ON E-UNIFICATION AND E-COMPLETION.

A. E-UNIFICATION

The E-unification algorithm implemented for this research operates upon terms

that are composed of variables, constants, commutative (C) operators,

associative-commutative (AC) operators, and associative-commutative-with-identity

(ACI) operators. Upon entry into the algorithm, the two terms are assumed to be

flattened with respect to associativity and identity. The function E-UNI FY, described

in figure 11, is the top level function and the interface to application programs

requiring E-unification. In it, some simple analyses are performed on the terms to be

unified and, as a result, the terms are passed to the appropriate E-unification

"module". Each of these modules may in turn recursively invoke E-UNI FY or some

other module to assist in its work. A third input parameter, PartialUnifier, is passed

along with the terms (or subterms) to be unified. It is a partially constructed unifier

that either will be updated at each level of recursion to reflect the successful

unification of its accompanying terms, Termx and Term2, or will be terminated and

discarded if the terms cannot be unified without violating the substitutions already in

PartialUnifier. The initial value of PartialUnifier is the identity unifier, that is, the

empty set. Upon termination, E-UNI FY or any of the E-unification modules returns

a set of unifiers; if this set is empty, then the pair of terms have no unifier. The

recursive approach used in this implementation is loosely based on the E-unification

model described by Yelick [Ye85]. However, Yelick's model was designed only to

work with confined, regular equational theories, and ACI theories do not fall into

that category.

Figure 12 contains the pseudo-code for a null-E unification module. It is really

a recursive version of Robinson's unification algorithm. If the two terms to be

unified are non-atomic, that is, they are not variables and not constants, processing

www.manaraa.com

64

E-UNI FY(Term,, Term2, PartialUnifier);
begin

case
Term, ” Tcrm2:

/* Term, and Term2 unify by the identity unifier */
return(PartialUnifier);

Term, and Term2 are both atomic terms:
/* Call upon the recursive Robinson algorithm */
NULL-E-UNlFY(Term„ Term2, PartialUnifier);

Term, is an atomic term:
if Term2.root e Faci
then ACI-UNIFY(Term,, Term2, PartialUnifier)
else NULL-E-UNIFY(Term„ Term2, PartialUnifier);

Term2 is an atomic term:
/* Reverse the roles of the two terms and come in again */
E-UNIFY(Term2, Term,, PartialUnifier);

Term,.root e Fc and Term2.root e Fc:
C-UNIFY(Term,, Term2, PartialUnifier);

Term,.root e FAC and Term2.root e FAC:
AC-UNIFY(Term„ Term2, PartialUnifier);

Term,.root e FACl or Term2.root e FACJ:
ACI-UNIFY(Term,, Term2, PartialUnifier);

Otherwise:
/* All other term combinations arc handled as null-E */
NULL-E-UNI FY(Term„ Term2, PartialUnifier);

end;
end;

Figure 11. The top level function of the recursive E-unification algorithm.

proceeds left-to-right through the operands of the terms, which are pairwise unified

through a recursive call to E-UNI FY. The unifiers of each operand pair are used to

update the unifiers returned from previous pairs, such that upon completion, the set

of unifiers represents those unifiers that will unify all operand pairs, simultaneously.

Sickmann's algorithm [5i79], as depicted in figure 13, was implemented to

permit the unification of commutative terms. If Term, and Terntj have the same

commutative operator, then unification can be attempted. Commutativity is

simulated by generating the set of all terms that are C-equal to Termx through the

permutation of the top-level operands of the term. Then, each of these permuted

www.manaraa.com

65

NULL-E-UNIFY(Term,, Term2, PartialUnifier);
begin

case
Term, = Tcrm2:

/* Term, and Term2 unify by the identity unifier */
return(PartialUnifier);

Term, is a variable:
if Term, occurs in Term2
then

/* Occurs check failure */
return(EmptySet)

else retum({Term, <— Term2}° PartialUnifier);
Term2 is a variable:

j* Reverse the roles of the two terms and come in again */
NULL-E-UNIFY(Term2, Term,, PartialUnifier);

(Term, is a constant) or (Term2 is a constant):
/* If they were equal constants, the first case would have caught it *j
retum(EmptySet);

Term,.root = Term2.root: begin
FinalPartials : = {PartialUnifier};
/* Pairwise unify the operands of Term, and Term2*/
for i := 1 to OPERANDS(Term,) begin

WorkPartials : - EmptySet;
for a e FinalPartials

WorkPartials : =
WorkPartials U E-UNI FY(«r(Term,//), <r(Term2//), <r);

FinalPartials := WorkPartials;
end;
retum(FinalPartials);

end;
Otherwise:

I* All other cases are terms with different root operators */
retum(EmptySet);

end;
end;

Notes:
OPERANDS(7erm) returns the number of top-level operands of Term.

Figure 12. A recursive null-E unification algorithm.

terms is paired with Tern^ and unified as though its common root operator was a

null-E operator.

Example 5.1: Let / be a commutative operator and g be a null-E operator. Let

5 =J[w, x , y) and

www.manaraa.com

6 6

t =f[a, by c) be terms. Then

csu(s, /) = csu(s,, /) (J csu(s2, /) U csu(s3, r)

U csu(s4> t) U csu(5s, t) U csu(s6, /)

such that

•Si = g(w, x, y),

h = y> *),

■h = g(x, w, y),

s* = g(x, y , v v) ,

= #0, w, jt), and

$> = £0, w) .

C-UNIFY(Term,, Term2, PartialUnifier);
begin

if Term,.root = Term2.root
then begin

I* This is a heuristic to speed up C unification */
if C-OPERATORS(Ternij) > C-OPERATORS(Term2)
then

/* Swap Term, and Term2 */
Term, Term2;

FinalPartials := EmptySet;
do t e PERMUTED-TERMS(Tcrm,)

/* Unify the permuted term and Term2 as null-E terms */
FinalPartials : =

FinalPartials (J NULL-E-UNIFY(r, Term2, PartialUnifier);
retum(FinalPartials);

end
else

/* Term, and Term2 have different root operators */
retum(EmptySet);

end;

Notes:
C-OPERATORS(Term) returns the count of commutative operators at

all levels within Term.
PERM UTED-TERMS(Term) returns a list of all permutations of the

commutative term Term.

Figure 13. Siekmann's C unification algorithm.

www.manaraa.com

67

The AC unification algorithm implemented is not presented here. It is Stickel's

general AC unification algorithm, and is described in chapter 3. The ACI unification

algorithm implemented is depicted in figure 14. It is a modification of Stickel's AC

unification algorithm. Stickel briefly described some of the changes necessary to

perform this transformation [S/75], but two important cases are not discussed: the

first is how to proceed when one of the terms has an ACI root operator and the other

does not, and the second is how to proceed when the two terms have different ACI

root operators. We developed a method for handling both cases, only to discover

after further investigation that Fages had mentioned the same method several years

earlier [Fa84]. The method for the first case, as seen in function ACI-UNIFY2 of

figure 14b, entails constructing from the non-ACI term, a term that has the same root

operator and the same number of operands as the AC I term. The non-AC I term acts

as one of the operands of this new term, and the identity of the ACI operator acts as

all other operands. The two ACI terms are then unified by recursively invoking

ACI-UNIFY. When unifying two terms with different ACI root operators, the same

method is used twice. In each case, one of the ACI terms plays the part of the

non-ACI term. The results are then joined. (See statement (1) in figure 14a.) A

proof of correctness, completeness, and termination of the ACI unification algorithm

is given by Fages in the same paper.

Example 5.2: Let / be an ACI operator with an identity, e, and let g be an AC

operator. Let s =J[w, x, y) and t = g(w, v) be terms. Then the set of unifiers for s

and t is the set of unifiers for the terms s and /', where

f =A.g{“, v), e, e).

This could be represented as

t"=Ag{u, v)).

www.manaraa.com

6 8

Example 5.3: Let / and g be ACI operators with identities ex and e2, respectively. Let

s =J[w, x, y) and i = g(u, v) be terms. Then the set of unifiers for s and / is the set of

unifiers for the terms s and /' added to the set of unifiers for the terms s' and /, where

a' = £ (/K x, y), e) = g(J[w, x, y))

and

f v), e, e) = J[g{u, v)).

www.manaraa.com

69

ACI-UNIFY(Term1, Term2, PartialUnifier);
begin

case
(Term! is a variable) or (Term2 is a variable):

retum(NU L L- E- U NIF Y(Term,, Term2,PartialUnifier));
(Term, is a constant) or (Term,.root^Fi4C/):

retum(ACI-UNIFY2(Term„ Term2,PartialUnifier));
(Term2 is a constant) or (Term2.root^Fi4C/):

/* Switch the roles of Term, and Term2 */
return(AC 1 - UN 1F Y2(Term2, Term,,PartialUnifier));

Term,.root ^ Term2.root:
rcturn(ACl-UNIFY2(Tcrm,, Tcrm2, Partial Unifier) (1)

U ACI-UNIFY2(Term2, Term,, Partial Unifier));
Otherwise: begin

NewTerm,: = ABSTRACT(Term,);
NewTerm2: = ABSTRACT(Term2);
AbstractSet : = abstraction set from previous two statements
AbstractUnifiers := ACI-UNIFY-VO(NewTerm,, NewTerm2);
if AbstractUnifiers exist
then begin

NewPartials := (PartialUnifier);
for a e AbstractUnifiers

for x <- t e AbstractSet begin
Unifiers := EmptySet;
for d e NewPartials

if (a(jc).root is AC) and (<r(/).root is AC)
Unifers := Unifiers U E-UNI FY(<t(jc), ct(/), 0)

NewPartials := Unifiers;
end;

return(NewPartials);
end
else

I* There are no unifiers of Term, and Term2 */
return(EmptySet);

end;
end;

end;

ABSTRACT(7Vrm) returns a variable abstraction of Term.
ACI-UNIFY-VO(7>rm„ Term2) is Stickel's variable-only ACI

unification algorithm.

F ig u re 14a. T he A C I -u n if ic a tio n a lg o r ith m im p lem en ted , p a r t 1 o f 2.

www.manaraa.com

70

ACI-UNIFY2(Term,, Term2, PartialUnifier);
begin

/* Term2 is assumed to be an ACI term of the formyl/,, ..., /„) */
NewTerm := Term2[l <— Term,];
for i = 2 to n

NewTerm := NewTerm[/<— IDENTITY(Term2.root)];
retum(ACI-UNIFY(NewTerm, Term2, PartialUnifier));

end;

Notes:
IDENTITY(ACIOperator) returns the identity element o f ACIOperator.

Figure 14b. The AC I-unification algorithm implemented, part 2 of 2.

B. THE E-COMPLETION PROCEDURE

The E-completion procedure implementation used in this research is that

developed by Peterson and Stickel [PS81]. Failure-resistance, as described by

Forgaard and Guttag [FG84], was added to the procedure to increase its likelihood

of success. (Failure-resistance is discussed in chapter 4 of this paper.) The top level

E-completion procedure is depicted in figure 15a, and the modified versions of

PS-COMPLETION (now called CSR) and ADD-REDUCTION (now called

CSR-ADD-REDUCTION) are presented in figure 15b.

Our implementation of the E-completion procedure also incorporated the

concept of conditional reductions. A conditional reduction is a reduction of the form

(conditions)}. —> p,

such that (conditions) is a set of restrictions, in conjunctive normal form, on the

variable values in a term match between X and any term. Thus, in order to rewrite a

term using a conditional reduction, a term match must be found that does not violate

the conditions of the reduction. The topic of conditional reductions is outside of the

www.manaraa.com

71

scope of this paper; Baird gives a detailed presentation on the subject of E-completion

procedures involving conditional reductions [Zta88].

Example 5.4: Let -I- be an ACI operator with an identity element, 0, and let — be a

null-E operator. Let

r = (((* # 0)v(y * 0))) - (+ (*f j)) - + (-(*) , - 0))

be a conditional reduction. Any term match, a, between a term and the left-hand side

of r may be used to rewrite the term using r if at least one of jc or y is assigned a

non-zero value.

E-COMPLETION(S, Reductions);
begin

NewReductions, Shelved := CSR(S, Reductions);
while (NewReductions # Reductions do begin

Reductions := NewReductions;
NewReductions, Shelved := CSR(Shelved, Reductions);

end;
if Shelved = EmptySet
then retum(NewReductions)
else HALT with FAILURE;

F ig u re 15a. T h e E -c o m p le tio n p ro c e d u re im p lem en ted , p a r t 1 o f 2.

www.manaraa.com

72

CSR(S, Reductions);
begin

Pairs := EmptySet;
Eqs : = S;
Shelved : = EmptySet;
while ((Pairs # EmptySet) or (Eqs # EmptySet)) do begin

if Eqs = EmptySet
then MAKE-CRITICAL-PAIRS(Pairs, Eqs);
else begin

< s, t> := the member of Eqs with the Smallest weight;
Eqs:= Eqs — { < s, t>};
s, := REDUCE*(s, Reductions);
t, := REDUCE*(t, Reductions);
if s, = t,
then /* Successful conflation */
else begin

CSR-ADD-REDUCTION(s,, t„ Reductions, Pairs, Shelved);
if < slt /, > was not added to Shelved
then INTER-REDUCE(Reductions, Pairs);

end;
end;

end;
return(Reductions, Shelved);

end;

CSR-ADD-REDUCTION(s, t, Reductions, Pairs, Shelved);
begin

case
weight(s) > weight(t):

A -» p : = s —► /;
weight(s) < weight(t):

A -> p : = t —> s\
weight(s) = weight(t):

Shelved := Shelved U { < Mi > }*,
end;
Reductions := Reductions U p}\
for r e Reductions

Pairs : = PairsU { < 2 -► p, r > , < A-> p, r*AC> ,
< J-A C P A C t r -> » ^ ^ -A C P*AC* r A C > } ' *

end;

Notes:
REDUCE*(Term, Reductions) returns an irreducible form of Term,

with respect to Reductions.
INTER-REDUCE(R^wc//o«s, Pairs) is as described for use by the

procedure PS-COMPLETION.

F ig u re 15b . T h e E -c o m p le tio n p ro c e d u re im p lem e n te d , p a r t 2 o f 2.

www.manaraa.com

73

VI. TERM SYMMETRY

Experience has shown that a major portion of the time and processing effort

required to complete an incomplete set of reductions using an E-complction

procedure, such as those discussed in chapter 4, is spent in the calculation and

subsequent testing for confluence and coherence of critical pairs. Pruning techniques

that remove from consideration those critical pairs that represent redundant or

superfluous information, either before, during, or after their calculation, can therefore

make a marked difference in the run time and efficiency of an E-completion procedure

to which it is applied. These potential savings are, however, dependent upon the

efficiency of the pruning technique invoked. If it takes longer to decide that a

particular critical pair may be discarded than it would take to process the critical pair,

then the pruning technique is probably of little use, other than to reduce the size of

the solution space.

In this chapter, a new technique is proposed for removing critical pairs from

consideration at various points before, during, or after their formation. This method

is based on the property of term symmetry, which will be defined and explored with

respect to E-unification and E-completion procedures

A. ALTERNATIVE PRUNING TECHNIQUES

Kapur, Musser, and Narendran [0 /8 6] developed and implemented a

technique for identifying and discarding redundant critical pairs during the

E-completion process. It is based upon earlier work performed by Lankford

[La75]. In their procedure, the superposition associated with each critical pair is

examined in order to decide whether the critical pair should be processed or

discarded. They define a superposition as a 4-tuple,

(^ i P i t ^ 2 P i t 0)»

www.manaraa.com

74

such that Xx -> p, and X2 -+• p2 are reductions, and such that S(XJi) = 0(X2), that is,
E

6 e csu(XJi, X2). Associated with each superposition is a critical pair of the form

<0(pi), <-P2]) > •

The bag (multiset) of superpositions for a given pair of reductions can be divided

into two classes: composite superpositions and prime superpositions. A composite

superposition is one for which 0(i2), thatis, O(XJi) has a proper reducible subterm. A

prime superposition is one which is not composite.

Kapur et al. proved that if a superposition is composite, it has an equivalent

superposition which can be factored into two prime superpositions with which the

original composite superposition can be replaced. They also show that the bag of

critical pairs corresponding to the prime superpositions is sufficient for use in an

E-completion procedure. This technique decreases the processing time spent reducing

critical pairs to terminal form, since the critical pairs corresponding to composite

superpositions are discarded before they are simplified. However, no unification time

is saved: Complete sets of unifiers must still be generated, and each unifier must still

be applied to Xx in order to form the superpositions.

A variation of the composite/prime superposition pruning technique identifies

and eliminates unblocked superpositions. An unblocked superposition is a

superposition which contains an unblocked unifier. An unblocked unifier, as described

by Lankford, is a unifier, 6 = {x, «- r„ ..., jc„ «- tn}, in which at least one of the terms

/„ ..., tn is reducible. A unifier in which all right-hand terms are in terminal form is a

blocked unifier, and the corresponding superposition is a blocked superposition.

Every unblocked superposition is also a composite superposition. This is

because, if a right-hand term in 6 is reducible, and X2 is non-trivial (being the

left-hand side of a reduction), then 0(X2) will also contain that same right-hand term

www.manaraa.com

75

as a proper, reducible subterm. Thus, unblocked superpositions can be discarded

without affecting the results of E-completion.

However, the converse is not true; a blocked superposition may be either

composite or prime. Thus, the cardinality of the bag of prime superpositions will be

less than or equal to that of the bag of blocked superpositions. This would appear to

be an advantage in favor of the composite/prime method. However, one must

consider that the unblocked/blocked method has an additional savings in processing;

since only the unifier is examined to determine the worth of a superposition, the

superposition does not actually have to be constructed, that is, the unifier does not

have to be applied to JLJi or X2.

Unfortunately, Kapur et al. did not give comparisons of the two pruning

techniques that they describe. However, they did discuss their implementation and

results for the unblocked/blocked technique. When dealing only with null-H

operators they found that, in general, the processing time saved by discarding

unblocked critical pairs prior to their reduction to terminal form is less than that

spent searching for those critical pairs. But, their tests show a significant savings

when AC operators are present (as much as 70% savings on total critical pair

reduction times, for some examples). They attribute the difference between the null-E

and AC cases, at least in part, to the facts that AC unification usually results in

multiple mgus (most general unifiers) and AC unification algorithms are not usually

minimal (that is, redundant unifiers are present in the complete sets returned by the

algorithms).

www.manaraa.com

76

B. THE DEFINITION OF TERM SYMMETRY

The concept of term symmetry is a simple one. It is based on the realization

that variable names used in a term are just symbols acting as placeholders for actual

variables, and mapping those symbols to a different set of symbols will not change

any aspect of the term, other than the variable names. This is the same idea that

permits variables to be renamed in order to assure that terms involved in unification

are variable-name disjoint. We begin by defining variable renaming.

Definition 6.1: A set o f variable renaming substitutions or a variable renaming is a set

of substitutions,

° = {*i<- y» ~ ,Xn*-yn},

which is a one-to-one, onto mapping from the set of variables, {xh ... , x„}, to the set

of variables , {yXt ... , y„}. Any substitution , jc , <—y„ such that x, = y t is an identity

substitution and may be dropped from a. The identity variable renaming is the empty

set, {}. The application of a variable renaming, <x, to a syntactic entity, /, is written

as r.

Term symmetry exists between two terms when one can be transformed by a

variable renaming into the other. This is stated more formally in definition 6.2.

Definition 6.2: Two terms, s and t, are symmetric by or, written as s « /, if there

exists a (possibly empty) variable renaming from vars(s) to vars(t),

= Ti. - , x n+-yn},

and its inverse,

' = lVi«- *i, .V,
such that S’ = / and s = r~x. Such a variable renaming is said to be a symmetry of s

and /. Two terms for which no symmetry exists are asymmetric.

www.manaraa.com

77

Note that if o is empty then s = t. Also, note that if s and / are variable

disjoint, as is usually the case, then a is a match between s and t.

Example 6.1: Let + be a commutative operator (C, AC, or ACI). The two terms

5 = + (x,, jc,, x2, x3) and / = + (yu y 2, y 2, .>>3) are symmetric by the variable renamings

°\ = 0*1 *-y2, x2 <-yu *3 <-yJ and a2 = (x, <-y2, x2 x3 * -y {).

Another form of term symmetry that is of interest is the symmetry which can

exist within a single term. Obviously, symmetry within a term is a consequence of the

presence of commutative operators.

Definition 6.3: A term, s, is self-symmetric by <7, written as s =s s, if there exists a

variable renaming from vars(s) to vars(s),

°= {xx*~yx, • •> xn<-yn]},

such that s9 = s. Such a variable renaming is said to be a self-symmetry of term 5 .

All terms are self-symmetric by the identity variable renaming. Since

self-symmetry is a consequence of commutativity, it can only exist (other than the

self-symmetry implied by the identity variable renaming) if the term contains one or

more commutative operators.

Example 6.2: Let + be a commutative operator (C, AC, or ACI). Then the term

s = + (jc,, jc„ x2, jc3, jt4) is self-symmetric by the variable renamings

°\ = {x2 <- *3, <- ar2), a2 = [x2 <- xA, xA <- a3 = {x2 +- x4, x4 <- x3},

= {x2 <- x2, x2 a- x4f x4 a- x2}, and a5 = {x2 x4, ♦- x3, x3«- x2}.

As illustrated by this example, there can be many self-symmetries within a term.

Occasionally, it is desirable to express all self-symmetry relations in a term as one

structure, for example, when deciding if a pair of subterms are symmetric with respect

to the self-symmetries of their mutual superterm. In order to accomplish this, the

variables of a term can be divided up into self-symmetry classes, as described below.

www.manaraa.com

78

Definition 6.4: The set o f self-symmetry classes of a term, s, written as ssc(s), is the

collection of sets, each of which contains the mutually symmetric variables of s.

Example 6.3: Let + and s be the operator and term, respectively, described in

example 6.2. Then ssc(s) = {{Xj}, {jc2, jc3, jc4}}.

This is a concise representation of all self-symmetry relations within a term. The

value of ssc(s) is unique for a term s.

The concepts of term symmetry and self-symmetry can be naturally extended to

deal with syntactic structures other than terms, such as pairs of terms, sets of

substitutions, etc., by viewing such structures as terms.

Example 6.4: Let 4- be a commutative operator (C, AC, or ACI). Let < s, / > be an

unordered pair of the terms, s = + (jc,, x2, jc3) and / = + (y,, y 2> .tt)- An

unordered pair may be viewed as a term f[s, t) in which / is a commutative operator

not occurring in s or t. Then ssc(< s, t >) = ssc(J[st /)) =

{{*1. -V2}. {x2, jc3, y„ y j}}-

C. TERM SYMMETRY IN E-UNIFICATION AND IN E-COMPLETION

There are four types of term symmetry which may be observed in an

E-completion procedure: symmetric reductions in the set of reductions being

completed by the procedure, symmetric critical pairs, symmetric subterms used in the

formation of critical pairs, and symmetric unifiers produced during the formation of

critical pairs. The nature of term symmetry suggests that these symmetric syntactic

structures may be redundant. If so, it should be possible to derive from the

Peterson-Stickel E-completion procedure an asymmetric E-completion procedure that

produces the same results without processing symmetric redundancies. Such an

www.manaraa.com

79

asymmetric procedure could result in significant savings in processing if the

identification and elimination of term symmetry can be performed efficiently.

It is the goal of this section to show that an asymmetric E-completion procedure

can be developed. In order to accomplish this, two points must be proven: first, that

symmetry between syntactic structures, such as reductions, critical pairs, subterms,

and unifiers, can be detected, and second, that the processing of a set of pairwise

symmetric syntactic structures can be replaced by the processing of any one member

of the set without changing the results produced by the E-completion procedure.

One method for detecting symmetries between syntactic structures, albeit a very

inefficient one, is to generate all matches that exist between the structures. If one of

the matches is a variable renaming, there exists a symmetry between the structures.

A more efficient algorithm for symmetry detection will be presented later.

Proof of the second point is more involved. It must be proven for each of the

four possible types of term symmetry that may be encountered in E-completion. We

begin by stating, with respect to term symmetry, two lemmas that are fundamental to

automated deduction.

Lemma 6.0.1: If s, s', and t are terms such that s s s', then csufs, /) ss csu(s', /), that

is, (V0, e csu(s, /)) (302 e csu(s', /)) 0\ = 02.

Proof: This is just a statement of the fact that renaming the variables in a term to be

unified will change the resulting set of unifiers only be the sartie variable renaming. □

Lemma 6.0.2: If s and / are terms and r is a reduction such that j x / and s -> s', then
a r

t -* /' in such a way that s'
r a

Proof: In a manner similar to lemma 6.0.1, this is just a statement of the fact that

renaming the variables in a term to be rewritten by a reduction will change the result

of the rewriting only by the same variable renaming. □

www.manaraa.com

80

1. Symmetric Reductions.

A reduction, X -* p, is an ordered pair of the terms X and p. Two reductions,

Xx -> p x and X2 -+ p x, are symmetric reductions if there exists a variable renaming, <7,

such that Xx s X2 and p, s p2. The redundancies introduced into the E-completion

procedure by reduction symmetry are removed by the process of inter-reduction

simplification.

Inter-reduction simplification is an integral part of the E-completion procedure.

Recall that when a new reduction is added to a set of reductions being completed, the

two component terms of each reduction in the set are reduced to terminal form using

the other reductions in the set. Any reduction reduced to an identity is discarded to

preserve the finite termination property. If it reduces to an identity, then any

information carried by the reduction must be embodied within the remainder of the

set.

To demonstrate how this takes place, consider a member, Xl -> p,, of the set of

reductions that is symmetric by a variable renaming, o , to a newly added reduction,

X2 -* p2. By the definition of reduction symmetry, >1, ss X2, or X\ — X2. The variable
0 E

renaming is, therefore, a term match between Xx and X2, so Xx —► p, can be used to

rewrite X2 -> p2 into a new reduction, o(px) -> p2. But another consequence of the

symmetry of the two reductions by a is that p, sb p2 or p°x — <r(p,) = p2. Therefore, the
a ' E

new reduction is reduced to an identity and is discarded. Thus, the removal of

reduction symmetry already takes place in the E-completion procedure as part of the

inter-reduction simplification process.

Example 6.5: Let the set of reductions at some point in an execution of the

E-completion procedure be the reductions describing an Abelian group,

rx:x + (—jc) -► 0,

r2: — (—jc) —> jc, and

www.manaraa.com

81

r3: - (x + y) - > (- x) + (->),

such that + is an ACI operator and — is a null-E operator. Let

u-y + i - y) o

be a reduction newly added to the set o f reductions. It is the case that r, s rA by

o = {x<-y}. Thus a(x + (— jc)) = y + (—y), and the left-hand side of rA can be

replaced by <r(0), or 0. The reduced form of rA is 0 -* 0, which is an identity and must

be removed from the set of reductions.

2. Symmetric Critical Pairs.

A critical pair, <5, / > , is an unordered pair of the terms 5 and t. Two critical

pairs, < j„ /, > and < Sj, t2 > , are symmetric critical pairs, written as

< /, > ss < s2, t2 > , if there exists a variable renaming, <7 , such that 5, =ss2 and
o o

tx zzt2, or s, and /, ssj. Without loss of generality, we shall assume the former for

the duration of this discussion.

Critical pair symmetry is the lowest level of term symmetry in the E-completion

procedure, that is, most term symmetries between reductions, subterms used in

forming critical pairs, or unifiers will ultimately show up in the form of symmetric

critical pairs. Removal of the other three types of term symmetry will result in the

elimination of most, but not all, symmetric critical pairs.

In order to eradicate the remaining symmetric critical pairs, and to lay a

foundation for use in proving that symmetric subterms and unifiers can be removed,

it must be shown that discarding symmetric critical pairs will not change the results of

the E-complction process. We shall begin by establishing some basic facts about the

terminal forms of terms and critical pairs.

Lemma 6.1.1: If s and t are terms and R is a set of reductions such that s » /, then#
(V4«) (3 4 *) 4 * = 4 *.

www.manaraa.com

82

Proof: The proof is a consequence of lemma 6.0.2. If s s: r, then for each sequence

of rewrites,

5 = ► 5, —> * Sn — .sj,*,

there must also exist a sequence of rewrites,

/ = r0

for 0 < n, such that

S° 25 /° => .Sj S /j ... 5n S tn.
o o o

Therefore, if 5 ^ t, then (V.sj*) (3/j*) sj* ss rl* □

Lemma 6.1.2: If cpx and cp2 are critical pairs such that cpx« cp2, then
o

(Vc/?^*) (3cp2|*) cpx[R j cp2j*.

Proof: Let cpx = < sXt tx > and cp2 = < s2, t2 > . Assume, without loss of generality,

that sx s s2 and /, s t2. Then, as a consequence of lemma 6.1.1,

(Vs,l*) (B^l*) 5,1* j s2|* and

(V/il-) (3/2l*) ‘d* J h lR.

Pairing these symmetric terminal forms also yields symmetric critical pairs in terminal

form,

ca1* = <*Si!*» 6 l* > 7 cp2l l* = < s 2l*> t2i R> .

Therefore, if cpx s cp2, then (Vc/>,1*) (3cp2j*) cpx[R » cp2[R. □

If two symmetric critical pairs truly represent redundant information, then it will

be possible to prove that either one of them is sufficient for the proper operation of

the E-completion procedure.

Lemma 6.1.3: If cpx and cp2 are critical pairs such that cpx s cp2t then either cpx or cp2

may be discarded without changing the results produced by the E-complction

procedure.

Proof: If cpx ^ c p 2f then it follows from lemma 6.1.2 that

(Vc/7,1*) (3cp2i R) cpx[R « cp2[R. Let cpx = < sx, /, > , cpx[= < 5,1 , /,! > ,cpx = < 5„ /, > ,

www.manaraa.com

83

cp2 = < s2, t2 > , and cp2\, = < s2j, t2j > . When a critical pair is reduced to terminal

form, its two component terminal forms exhibit one of three relationships:

(1) They are provably equal under the equational theory in use.

(2) They are not equal and have different weights.

(3) They are not equal and have identical weights.

In order to accept this lemma, it must be proven for each of these cases.

Case 1: If s,l* = /,!*, then (5 ,l 11)* = (7,1*)'. Since s,l* =s s,i* and /,!* 25 r,l*. it follows
£ £ o o

that (5,1*)' = 521* and (f,!*)* = /21*, and further that 521* = /2j*. Thus, if cpx conflates,
E E E

that is, reduces to an identity, then so will cp2. Only those critical pairs which do not

conflate affect the E-completion procedure, so either cpx or cp2 may be discarded

without affecting the results of the procedure.

Case 2: Since 5,1* ss 5,1* and /, 1* =s r,l*. it follows that weighty, 1*) = weightfs,!*) and
o o

weight(/,l*) = weight^l)* (due to the fact that variables, regardless of their name,

have the same weight). Thus if weighty, 1*) # >veight(/,|*), then

weight^]*) # weight(f2l*), and the reductions, r, and r2, formed by ordering the terms

of cpx 1* and cp21*, respectively, will also be symmetric by a. Thus, if r, is added to

the set of reductions, and then r2 is added, the inter-reduction simplification process

will remove r2 from the set of reductions. Reversing the roles of the two reductions

leads to the same results. Therefore, processing either cpx or cp2 will produce the

same result as processing both critical pairs.

Case 3: As in case 2, weight(s,l*) = weight^l*) and weighty, 1*) = weight(f2l*). Thus,

if weight(s,l*) = weighty, 1*), then it will also be true that weightfol*) = weight(/2l*).

Since a reduction cannot be formed from a pair of unequal terms with the same

weight, both cpx 1* and cp2[* will cause the E-completion procedure to fail. Therefore,

processing either cpx or cp2 will produce the same result as processing both critical

pairs.

www.manaraa.com

84

Therefore, regardless of the outcome of simplifying the two critical pairs to their

terminal forms, either cpx or cp2 may be discarded without changing the results

produced by the E-completion procedure. □

This result may be generalized to deal with a set of symmetric reductions, rather

than just a pair.

Theorem 6.1: A set of pairwise symmetric critical pairs encountered during the

E-completion process may be replaced by any single member of that set without

affecting the results of the process.

Proof: Let {cpx, ..., cpn} be a set of pairwise symmetric critical pairs encountered

during the E-completion process. Without loss of generality, assume that cpx is the

critical pair that is to be retained. Since the set is pairwise symmetric, there are n — 1

symmetric pairs of critical pairs,

< cpXy cp2> , < cpx, cp2 > , . . . , < cpx, cpn > ,

each of which contains cpx. As a consequence of lemma 6.1.3, cpt of each pair,

< cpx, cpi > , for 2 <L i < n, may be discarded, leaving only cpx. Therefore, a set of

pairwise symmetric critical pairs encountered during the E-completion process it may

be replaced by any single member of that set without affecting the results of the

process. □

3. Symmetric Unifiers.

As shown in the previous section, symmetric critical pairs may be discarded

without affecting the results of the E-complction procedure. However, creating

critical pairs which are then thrown out is a waste of processing time: Unifiers must

be generated and applied to form these unneeded critical pairs. A better approach is

to search for symmetric redundancies and to remove them from the components from

which the critical pairs are built before much processing effort has been expended.

www.manaraa.com

85

One of the components that can be examined for term symmetry is the unifier

associated with each critical pair. We would like to show that discarding symmetric

unifiers has no effect on the results of the E-completion procedure. In order to prove

this, it must be shown that symmetric unifiers produce symmetric critical pairs.

Definition 6.5: Let 5 and s' be terms. Assume, without loss of generality, that 5 and

s' are variable disjoint. Two unifiers, 0,, 02 e csu(s, s'), are symmetric unifiers, written

as 0, s: 02, if there exists a variable renaming, o, such that 0? = 02, and, for all terms, t,

to which 0, and 02 will be applied, t zz t and 0,(/) ~02(r).

The definition of symmetric unifiers is more complicated than those of

symmetric critical pairs and symmetric terms. In fact, the final condition of the

definition, that is, the requirement that for all terms t to which the unifiers will be

applied 0,(/) =s 02(/), seems to be self-defeating: Checking this condition for a given

value of a requires the application of 0, and 02 to a term, which is exactly the process

that detecting and discarding symmetric unifiers is supposed to eliminate. However,

there is a way to show that any variable renaming that meets the first two conditions

of the definition will meet the third condition.

Lemma 6.2.1: Let s and s' be variable disjoint terms. If 0„ 02 e csu(s, s') such that

0\ = 02, and there exists a term, /, such that t ss /, then 0,(r) « 02(O- £ *
Proof: By definition, / s / implies that r = /. Since 0? = 02, it follows that

02(f) = 0f(r). If it can be proven that 0?(r) = (0i(O)*» then by transitivity,
e r

02(f) = (0,(/))% which is the definition of 0,(/) s 02(/).

Assume that Ol = {x0*-s0, ... ,*„«-$,} and 0T = {*o *- sj, ... The

nodes of the tree representation of / each fall into one of three categories:

(1) operators, including constants,

(2) variables, jq, for 0 < / < w, and

(3) variables, jq, for i > n.

www.manaraa.com

8 6

Only categories (2) and (3) need to be examined, since operators are not affected by

substitutions. In the tree for 0,(f):

(1) I f O</ < / 7 , then jc, is replaced by s,.

(2) If / > n, then jc, remains the same.

So, in the tree for (O^t))0:

(1) if 0 < / < n, then jc, is replaced by s".

(2) if / > n, then jc, is replaced by jc".

In the tree for r:

(1) if 0 < / < w, then jc, is replaced by jc".

(2) if i > «, then jc, is replaced by jc".

And, in the tree for d°x{t°):

(1) if 0 < / < /?, then jc, is replaced by s°.

(2) if / > w, then jc, is replaced by jc".

Thus, it can be seen that the tree representations o f (0i(/))" and #"(/") are the

same, and so (0,(r))" = 0T(/*)- Therefore, if 0? = 02 and t = t, then 0,(r) =s 02(t). □
E E ° °

As will be shown in the proof of the following lemma, one result o f lemma 6.2.1

is that the critical pairs produced by a pair of symmetric unifiers are also symmetric.

Lemma 6.2.2: Let Xx -► p, and X2 -> p2 be reductions. If 0,, 02 e csu(.̂,//, X2) such that

0i « 02, then either 0, or 02 may be discarded without affecting the results o f the

E-completion procedure.

Proof: If 0, s 02, then by the definition of symmetric unifiers 0f = 02, p, ss pM and
• E •

Xx{.i *- p2] « +- p2] . (The latter two terms are those to which 0, and 02 are

applied to form critical pairs.) It then follows from lemma 6.2.1 that Sx{px) s 02(p,)

and 0,(2,[/ <- p2]) s 02(Xx_i <- p2]). Thus, the critical pairs, < 0,(pt), 0,(i,L**+- p2 J) >

and < 02(Pi), 02(^iC/«- p2]) > , are also symmetric by a. By theorem 6.1, cither of

these critical pairs may be safely discarded. Therefore, if 0,, 02 e csu(XJi, X2) and

www.manaraa.com

87

0j » 02, then either 0X or 02 may be discarded without affecting the results of the

E-completion procedure. □

This result can be generalized to deal with sets of pairwise symmetric unifiers,

just as lemma 6.1.3 was generalized to theorem 6.1.

Theorem 6.2: Let Xx -» p, and X2 —► p2 be reductions. A pairwise symmetric subset of

csu(i,//, X2), for / e sdom(ij), encountered during the E-completion process may be

replaced by any single member of that set without affecting the results of the process.

Proof: The proof of this theorem proceeds like that of theorem 6.1. □

4. Symmetric Subterms.

Another component of the critical pair that can be examined for term symmetry

is the subterm chosen from the left-hand side of a reduction.

Lemma 6.0.2 states that if s and t are terms and r = X —► p is a reduction, such

that s * f t and s -+ s 't then t -+ 1' such that s' s /'. Since a is merely a variable

renaming, it follows that there must exist an i e dom(s) and a y e dom(r) such that

(s/iy = t/j, s/i matches X by 0„ t/j matches X by 0Jt s' = s[z <— 0,{p)l, and

i' - iU - w :i.

Now consider the case of s « 5, such that (s/i)m ~ s/j and i # y, for some

/, j e dom(s). If s/i matches X by 0, and s/j matches X by 0jf then is it true that

s[, 4- 0,(p)] « j[y 4- 0j(p)~\1 If s/i and s/j are rooted at different depths in the term

tree of s, the two subterms cannot be considered symmetric. They are also not

symmetric if they are sibling operands of a common non-commutative operator. If

s/i and s/j are in distinct subtrees of s, then they can only be symmetric if the subtrees

in which they appear are symmetric. Thus, the determination of symmetry is pushed

upward in the tree to the level at which the two subtrees have a common parent

www.manaraa.com

8 8

node, and once again becomes a matter of determining the symmetry of sibling

operands. This leads to a definition of symmetric subterms.

Definition 6.6: Let s be a term. Two subterms, s/i and s/j, are symmetric subterms o f

s, written as s/i =s s/j, if there exists a variable renaming o such that (s/i)a = s/j, s s s,
o E °

and s/i and s/j are sibling operands of a common commutative (C, AC, or ACI)

operator.

This definition must be modified slightly to be used with subterms of the

left-hand side of a reduction. I f r = A -> p is a reduction, then two subterms A/i and

A/j are symmetric by o if (A/i)° = A/j, r s r , and A/i and A/j are sibling operators of a
E *

common commutative operator. The reason that r zz r is required in place of A =: A is

that we want to show that symmetric subterms of A produce symmetric critical pairs,

but both A and p are used in forming critical pairs.

Lemma 6.3.1: Let Ax->px and A2 -* p2 be reductions. If A JissA Jj, such that

i, j e sdom(i,), then either AJi or AJj may be disregarded without affecting the results

of the E-completion procedure.

Proof: Without loss of generality, assume that the two reductions are variable

disjoint. Lemma 6.0.1 states that if A jissA J j, then

(V0,ecsu(AJi, A2)) (30j e csu(AJj, A2)) 0? = 0,. Without loss of generality, we shall

assume such a 0, and its corresponding 0, in the remainder of the proof.

AJi and AJj produce critical pairs, < 0,(Pi), 0,{̂ iE/ «— p2]) > and

c 0/pi), ej(Al\ j * - p J) > , respectively. By the definition of symmetric subterms,

A\ -> Pi » At -> p, and, thus, px s px. Since 0f = 0y, it follows from lemma 6.2.1 that

e,(px) ss 0/pi). But in order for the critical pairs to be symmetric by a, it must also be

true that 0,<>*,[/ <- p2]) j 0,(Ax\ j <- p2]).

www.manaraa.com

89

By viewing a pair of symmetric terms as trees, it can be seen that replacing a

symmetric subterm in each of the pair by a subterm that is also symmetric yields a

new pair of symmetric terms. Since the two reductions are variable disjoint, and a is

a variable renaming from vars(2,//) to \ars(AJj), it follows that p2 ^ p2. Thus,

p2]=s Ax\j< - that is, (2 ,[/<-p2])° = pJ and, consequently,9 E

O M ilj *- p j) = ,[* «- p j) ') . So, if it can be proven that

iCi 4- p2» = - p j)) ' , then it must also be true that

0/^iD* <- P2~\) = W l ' Pil))', that is d , (W <- p2])* = B ^A jj <- p2]).

Assuming that r = >i|[/<— p2D makes this a proof of 0"(r) = (6i(t))af which was

proven as part of the proof of lemma 6.2.1. Thus, 0t(i j [/<— p2]) ~ QjA,[j <- p2]), and

the critical pairs produced by AJi and AJj are symmetric. It follows from theorem 6 . 1

that either of these symmetric critical pairs may be discarded without affecting the

results of the E-completion procedure.

This result can be observed for each symmetric pair of unifiers from csu(AJi, A2)

and esu(AJj, A2). Therefore, if AJi » AJj, then either AJi or AJj may be disregarded

without affecting the results of the E-completion procedure. □

This lemma can be generalized to handle sets of pairwise symmetric subterms,

much as lemma 6.1.3 was generalized to theorem 6.1.

Theorem 6.3: Let Ax -» p, and A2 -* p2 be reductions. The processing of a set of

pairwise symmetric subterms of Ax encountered during the E-completion process may

be replaced by that of any single member of the set without affecting the results of

the process.

Proof: The proof of this theorem proceeds like that of theorem 6.1. □

www.manaraa.com

90

D. TERM SYMMETRY ALGORITHMS

1. A Term Symmetry Decision Algorithm.

The algorithm developed in this section is a decision procedure for the symmetry

of a pair of terms composed of commutative operators, null-E operators, constants,

and variables. It can also be used to decide the symmetry of terms involving AC and

ACI operators if those terms have been simplified to normal form, that is, the terms

have been flattened and have had all identities removed through simplification.

The term symmetry decision algorithm is similar in concept to the tree

isomorphism decision algorithm presented by Aho, Hopcroft, and Ullman [.

Their algorithm ignores all node labels in its operation. Unfortunately, this fact

makes it inappropriate for use in deciding term symmetry, because for terms to be

symmetric, constants must map onto identical constants and variables must map onto

variables. An extension of the tree isomorphism decision algorithm is also suggested

by Aho et al. to handle node labels. However, it, too, cannot be used to decide term

symmetry, since the extension requires that variables map onto identical variables. In

addition, neither of these algorithms consider the possible presence of null-E

operators along with the commutative operators in the tree.

The pseudo-code for the term symmetry decision algorithm is contained in figure

16. If Termx and Tern^ are symmetric terms, SYMMETRIC? returns a symmetry, o.

Otherwise, it returns a value of FALSE. The actual implementation of this algorithm

can be made more efficient by the application of constraints. For example,

comparing the sizes of vars(Term,) and vars(before calling

BUILD-TERM-BAG could save unnecessary processing, since a difference in these

sizes means that Termx and Term2 are definitely not symmetric.

www.manaraa.com

91

The terms input to SYMMETRIC? are passed successively into the function

BUILD-TERM-BAG. This function constructs a bag, or multiset, of terms from its

input parameter, Term. The term bag contains exactly one new term for each

distinct variable, xlt in Term. This new term is a copy of Term in which all

occurrences of jc, have been replaced by the constant c„ and all other variable

occurrences have been replaced by the constant c2. These are new constants, that is,

cx and c2 do not appear in Termx or T e r n input to function SYMMETRIC?

Associated with each new term is jc„ the variable that was replaced by cx. (See

statements (2) and (3) in the pseudo-code.) If Term is ground, that is, contains no

variables, then the term bag returned is empty.

Once the term bags for Termx and Term2 have been constructed, they are

compared to decide whether or not the two input terms are symmetric. If the term

bags are both empty, that is, both Termx and Term2 are ground, then Termx and Term2

are each sorted with respect to their commutative operators, that is, only the

operands of commutative operators are sorted. Then the sorted terms are compared.

If they are equal, then Termx and Terrr^ are symmetric by the identity symmetry,

a = {}. If unequal, the two terms are not symmetric, and a value of FALSE is

returned.

On the other hand, if either of the term bags is non-empty, then each term in

both term bags is sorted with respect to commutativity, and then each term bag is

sorted. If the two sorted term bags are equal, then there is a one-to-one, onto

mapping from each term in TermBagx to an equivalent term in TermBag2. A term

bag contains exactly one term for each variable in the term from which it was

constructed, and each variable is associated with exactly one member of its term bag.

Thus, the mapping from TermBagx to TermBag2 can, and is, used to construct a

one-to-one, onto mapping from vars(7Vrm,) to y*rs{Term^. (See statement (6) in the

pseudo-code.) This mapping is returned as a symmetry of Termx and Tern

www.manaraa.com

92

If the two sorted term bags are not equal, then Termx and Term, are not

symmetric, and a value of FALSE is returned.

BUI LD-TERM-B AG(T erm);
begin

Vars := the set of variables occurring in Term, { j c , , . . . , jc„ } ; (1)
TermBag : = EmptyBag;
for jc , e Vars begin

* { ^ 1 * ••• ♦ "*j-l * 2̂» ^ "̂ j+1 * *-2> * ^,), (2)
TermBag := TermBag -I- <T,(Term):jc,; (3)

end;
retum(T ermBag);

end;

SYMMETRIC?(Term,, Term2);
/* Term, and Term, are assumed to be in normal form. */
begin

TermBag,: = BUILD-TERM-BAG(Term,);
TermBag,: = BUILD-TERM-BAG(Term,);
if (TermBag, is empty) and (TermBag, is empty)
then /* Both Term, and Term, are ground terms. */

if COMM-SORT(Term,) = COMM-SORT(Term,) (4)
then retum({})
else retum(FALSE)

else /* Term,, Term,, or both terms contain variables. */
if SORT-BAG(TermBag,) = SORT-BAG(TermBag,) (5)
then begin

a: = EmptySet;
for (/,:jc, e TermBag,) and (/,:y, e TermBag,)

a := aU{*i<-y,}; (6)retum(cr);
end
else retum(FALSE);

end;

Notes:
COM M-SORT(Term) recursively sorts the operands of the commutative

operators of Term.
SORT-BAG(TermZtog) uses COMM-SORT to sort each term in TermBag,

then sorts TermBag.

Figure 16. An algorithm to decide if two terms are symmetric.

www.manaraa.com

93

It can be seen in figure 16 that SYMMETRIC?(7erm„ 7>rm2) is an algorithm.

There are a finite number of distinct variables in each of Termx and Term2, thus

BUILD-TERM-BAG will halt for each. Also, since SYMMETRIC? contains no

loops, it will halt. The correctness of the algorithm, however, is not as simply shown.

Theorem 6.4: The function SYMMETRIC?(Termu Term2) returns a symmetry, <r, iff

Terml s Ternij.

Proof that SYMMETRIC?(Termlt Term2) returns Termx ~ Term2: There are two * 1 2

cases for which SYMMETRIC? returns a symmetry a:

(1) TermBagx and TermBag2 are empty, and Termx = Tern

(2) TermBagx and TermBag2 are not empty, and TermBagx = TermBag2.

Case 1: A term bag created by BUILD-TERM-BAG contains exactly one term for

each distinct variable in vars(Term). Thus, TermBagx and TermBag2 can only be

empty if both Termx and Tern^ are ground terms. Consider that if a = {}, then

Termt — a(Term,). Since Termx = T e r n it is a consequence of transitivity that
£ £

a(Termx) == Ternij. Therefore, Term, ~ Ternij.

Case 2: The following refers to the relationships illustrated in figure 17. Let

1 = {^,i. •••» 'I'™} be a set of one-to-one, onto mappings defined such that, for

vars(7erm,) = {jc,, ... , jc„}, the mappings are \l/xx(Termx) = { j c , <— c,}(7erm,), ... ,

^J^Termx) = {jc„ «- c,}(7erm,), for some distinguished constant c,.

In a similar manner let co = {co,,, ..., câ } be a set of one-to-one, onto

mappings defined such that, for y*rs{Term^ = {y„ ..., y„}, the mappings are

coyl{Termx) = {y, c,}(7erm,), ..., (o^Term ,) = {yn <— c,}(7>rm,), for the same constant

c,. Thus, there is a set of inverse relations, co~l = {to;,1, ..., co^} that maps elements

(j)yj(Term2) back onto Term2.

www.manaraa.com

94

If all other variables remaining in these terms are viewed as identical

distinguished constants other than c„ then the effect of \ft and co on Term, and Ternij,

respectively, is the same as that of the function BUILD-TERM-BAG. Since

TermBagx and TermBag2 have the same number of elements, there exists a one-to-one,

onto mapping, 17, from TermBagl to TermBagx

It can be seen that \f/ and a>~x preserve the structure of the terms to which they

apply. In addition, since TermBagx = TermBagx r\ is also a structure preserving

mapping. So, we can define a set of structure preserving, one-to-one, onto mappings,

° = {°ij I o.j =

from the variables of Termx to the variables of Termj, where

(o-/oTio^xt(Termx) = w;}{jn{}lfJJermx)))

is the composition of functions a)-1, 17, and The set of mappings b is equivalent to

the symmetry returned by the function SYMMETRIC?

If, however, TermBagx # TermBag2, then >7 is not structure preserving, and no
E

structure preserving mapping b exists, so there is no symmetry from Termx to Tern

Therefore, if SYMMETRIC? returns a symmetry, 0 , then Termx » Terntj.

Proof that Term, 7 Termj SYMMETRIC?(Term,, T e r n returns o: By the 1 2

definition of term symmetry, if Term, « Termj they must have the same number of

variables. So, there are two cases to be considered:

(1) Term, and Term2 are ground terms.

(2) Term, and Termj contain variables.

Case 1: Since Term, and Termj are ground terms, TermBagx and TermBag2, produced

by BUILD-TERM-BAG, will be empty. In addition, Term, can only be symmetric to

Termj by the symmetry 0 — {}. Since Term, == o(Termx) and o(Termx) = Termj, it is a

consequence of transitivity that Term, = Term,. Therefore,

SYMETRIC?(Term,, Termj) returns a — {}.

www.manaraa.com

95

Case 2 (proof by contradiction): Since Termx and Term2 contain variables, both

TermBagx and TermBagx produced by BUILD-TERM-BAG, will be non-empty. As

stated earlier, Terml and Term2 must contain the same number of variables, so

TermBagx contains the same number of terms as TermBag2. Assuming that

SYMMETRIC? returns FALSE, it must be the case that

(3/2 e TermBag2) (V/, e TermBagx) t2 =£ tx. It can be seen in the pseudo-code of
E

BUILD-TERM-BAG that

TermBagx = {oxx{Termx), ... , aln(Termx)} and

TermBag2 = {o2X(Term2), ... , oJJerm 2)}t

where, for all 1 < / < w, x t e vars(Termx), andy, e vars(7emi2),

<*u = {xx *- c2, ... , c2, or, 4- c„ jr(+1«- c2, ... , «- c2} and

a* = Oi *- c2, - , y,-i «- c2, y, <- c„ y i+l 4- c2, ... , yn *- c2}.

Since Termx is symmetric to Term2, there exists a variable renaming,

o = { x x*-ylt ... , xn<— y„\, such that o(Termx) = Term2, and consequently

° 2k°{Termx)) = a2l(Term2). Assume, without loss of generality, that Termx and Term2
E

are variable disjoint. Then by the definition of the composition of substitutions,

(VI < / < n) o2i(a(Termx)) = o2ioo(Termx),
E

where

<*2i°° = {*i«“ c2t... , jc,_, ♦- c2, ♦- c„ jt(+1, 4- c2, ... , 4- c2]

U lVi c2, ... ,y,_, <- c2,y, *- clfyM, 4- c2, ... ,yn 4- c2).

Since Termx and Term2 are variable disjoint, it is clear that the application of o2i<>o to

Termx as described, above, will have the same affect as the application of oXi to Termx,

that is,

(VI < i < n) o2l°o(Termx) = au(Termx).

Thus, as a consequence of transitivity,

(VI <, i < n) o^T erm J = au{Termx).

This means that (V/ 2 e TermBag^ (3/, e TermBag^) t2 = tX9 which implies that

TermBagx = TermBag2 and, consequently, that the function SYMMETRIC? returns

www.manaraa.com

96

<t = { j c x<-yx, . . . , jc„ <-yn}. This is a contradiction of the assumption that

SYMMETRIC? returns FALSE. Therefore if Termx szTerm^ then

SYMMETRIC?(7>rm„ TermJ returns a symmetry a. □

The steps in this algorithm which comprise most of the processing time have

been labelled in figure 16. A worst-case time complexity analysis on each of these

steps reveals the following, in which n is assumed to be the maximum of the number

of nodes in either the term tree for Terml or the term tree for Term

(1) find all variables in Term—0{n),

(2) for each distinct variable, build a substitution—0 (/i),

(3) for each distinct variable, build a new term—(X^2).

(4) sort Termx and Termj at all levels—(X/Hlog /i),

(5) sort and compare the term bags at all levels—CX^log n) -I- CK*2), and

(6) build the symmetry to be returned—O^)-

Thus, the worst-case time complexity for this algorithm is 0(/f2log n).

www.manaraa.com

97

The worst-case space complexity for SYMMETRY? is 0(«2), since there are, at

most, n copies of a term made for each of the n nodes in the term.

2. An Algorithm for Finding Asymmetric Subterms (Strict Domains).

Figure 18 contains the pseudo-code for an algorithm to prune the strict domain

(sdom) of a term down to an asymmetric strict domain (asdom). This is an extension

of the basic term symmetry decision algorithm. The function BU1LD-TERM-BAG2

produces a bag of extended terms. Each term is concatenated with the term

associated with the same variable contained in the term bag constructed for the

parent term. The concatenated terms for one subterm will equal the concatenated

terms for another only if the variables associated with the concatenated terms are

symmetric with respect to both the subterm and the parent term. The function

ASYMM-SUBTERMS is the recursive part of this algorithm. When a term is input

as an argument into ASYMM-SUBTERMS, its position within the top level term is

also provided. At the top level, this position is e, which is subsequently appended to

at each level of recursion. (See statement (1).) Note that an altered version of the

procedure MAKE-CRITICAL-PAIRS, which was described in chapter 4, is also

included.

www.manaraa.com

98

BUILD-TERM-BAG2(Term, SuperBag);
begin

Vars := the set of variables occurring in Term, {jc,, ..., jc„};
TermBag := Empty Bag;
for jc, e Vars begin

<T, . {jT, 4 C2, ... , Jf,_, 4 C2, Jf, 4 C,, 4 c2, ••• > * C2},
NewTerm, := <7,(Term);
NewTerm2 := the term from SuperBag that corresponds to jc ,

or if no such term exists, EmptyTerm;
TermBag : =

TermBag + CONCAT(COMM-SORT(NewTcrm,), NewTerm,);
end;
retum(TermBag);

end;

ASDOM(Term);
begin

TermBag := SORT-BAG(BUILD-TERM-BAG(Term));
retum(ASYM M-SUBTERMS(Term, TermBag, c); (1)

end;

MAKE-CRITICAL-PAIRS(Pairs, Eqs);
begin

{ î Pi* X2 -* p2} := the member of Pairs with the smallest value of
weight^,) + weighty,);

Pairs := Pairs — {>1, —► p„ X2-+ p2}\
Eqs : = {<a(p,), oU>2) > | a e csu(^„ 22)}

U { < <*(Pi), <*(Xx_i P2]) > I 2, p, is not an extension (2)
a i e AlSDOM^,) a a e csu(AJi, i 2)}

U { < tf(Pa)» o(X2_i 4- p,]) > | X2 -*■ p2 is not an extension (3)
a i e ASDOM(i2) a a e csu(XJi, ,̂)};

end;

Notes:
BUILD-TERM-BAG(Term) is as described in figure 16.
COM M-SORT(Term) recursively sorts the operands of the commutative

operators of Term.
CONCAT(7erm„ Term,) forms an ordered pair of Termx and Tern
SORT-BAG(TermBag) uses COMM-SORT to sort each term in TermBag,

then sorts TermBag.

Figure 18a. Algorithm to calculate the asymmetric strict domain of a term, part 1 of
2.

www.manaraa.com

99

ASYMM-SUBTERMS(Term, SuperBag, TermPos);
begin

Asdom : = EmptySet;
if Term.root e Fc, FAC, or FACl
then begin

SubtermBags : = EmptySet;
for / e {positions of top level operands of Term} begin

tb := BUILD-TERM-BAG2(Term, SuperBag);
if tb £ SubtermBags
then begin

Asdom := Asdom U {TermPos./};
SubtermBags : = SubtermBags (J {tb}\

end;
end;
SubAsdom : = EmptySet;
for TermPos./ e Asdom

SubAsdom : = SubAsdom
U ASYMM-SUBTERMS(Term//', SuperBag, TermPos./);

end;
else begin

SubAsdom : = EmptySet;
for / e {positions of top level operands of Term} begin

Asdom := Asdom U {TermPos./};
SubAsdom : = SubAsdom

(J ASYMM-SUBTERMS(Term//, SuperBag, TermPos./);
end;

end;
retum(Asdom(JSubAsdom);

end;

Figure 18b. Algorithm to calculate the asymmetric strict domain of a term, part 2 of
2.

3. An Algorithm for Finding Asymmetric Unifiers.

Figure 19 contains the pseudo-code for an algorithm to prune a complete set of

unifiers (csu) to an asymmetric complete set of unifiers (acsu). This is an extension of

the basic term symmetry decision algorithm. The function BU1LD-TERM-BAG3

treats each unifier as a commutative term, and each substitution pair within the

unifier as a null-E subterm. It produces a bag of extended terms. Each term is

concatenated with the terms associated with the same variable that are contained in

the term bags for the two terms of the critical pair to which the unifier would be

www.manaraa.com

100

applied. The concatenated terms for one unifier will equal the concatenated terms for

another only if the variables associated with the concatenated terms are symmetric,

with respect to the unifier and with respect to each of the two terms to which the

unifiers would be applied.

www.manaraa.com

101

BUILD-TERM-BAG3(Unifier, SuperBagl, SuperBag2);
begin

TermBag := Empty Bag;
for v e vars(Unifier) begin

NewU := a copy of Unifier in which all occurrences of v have
been replaced by c, and all other variable occurrences have been
replaced by c2;

NewTerm, := the term from SuperBag, that corresponds to v,
or if no such term exists, EmptyTerm;

NewTerm2 := the term from SuperBag2 that corresponds to v,
or if no such term exists, EmptyTerm;

NewTerm,^ : = CONCAT(NewTerm,, NcwTcrm2);
TermBag : = TermBag + CONCAT(COMM-SORT(NewU), NewTerm,*,);

end;
retum(T ermBag);

end;

ACSU(Csu, Term,, Term2);
begin

TermBag sub 1 := SORT-BAG(BUlLD-TERM-BAG(Term sub 1));
TermBag sub 2 := SORT-BAG(BUILD-TERM-BAG(Term sub 1));
UnifierBags := EmptySet;
for 0 eCsu begin;

ub := BUILD-TERM-BAG(0, TermBag,, TermBag2);
if ub$ UnifierBags
then begin

Acsu := Acsu U {0};
UnifierBags := UnifierBags (J {ub};

end;
end;
retum(Acsu);

end;

Notes:
BU1 LD-TERM-BAG(Term) is as described in figure 16.
COM M-SORT(Term) recursively sorts the operands of the commutative

operators of Term.
CONCAT(7erm„ Term2) forms an ordered pair of Termx and Termj.
SORT-BAG(TermBag) uses COMM-SORT to sort each term in TermBag,

then sorts TermBag.

Figure 19. An algorithm to calculate asymmetric complete sets of unifiers for
E-completion.

www.manaraa.com

102

VII. RESULTS

A. HARDWARE AND SOFTWARE ISSUES

This research was done as a part of a larger project funded, in part, by the

McDonnell-Douglas Corporation of Saint Louis, Missouri to investigate the

application of automated theorem proving tools to avionics diagnosis. The software

developed for the project is implemented in Common Lisp. The decision to use

Common Lisp instead of a block structured language, such as C, was motivated by

two factors: the desire for a quick development phase, and the need for portability

between a variety of very different hardware configurations. The implicit list

processing and interactive debugging capabilities of Common Lisp made it an ideal

choice for the former, and its high level of functional modularity made it easy to

change the software to reflect changes in the developing theories. The programs have

been successfully run on a Micro-Vax II under the VMS operating system, an

IBM/PC-RT under the AIX operating system (an implementation of AT&T System V

Unix), a Xerox 1108 Lisp workstation, and a Symbolics 3600 Lisp workstation. No

source code changes were necessary to run the software on these diverse machines

and operating systems.

The results contained in this chapter were achieved using an IBM/PC-RT. It

consistently executed the test runs faster than the other three machines.

www.manaraa.com

103

B. WEIGHTING FUNCTION

The development of an appropriate weighting function seems to be more of an

art than a science. If an execution of the E-completion procedure fails because of the

weighting function, the weighting function is modified and the procedure is executed

again. None of the authors cited in this paper explained how they derived their

weighting functions.

The weighting function used for these tests is described as follows:

weight(c<?/7.sta/?/)

weight (variable)

weight(+ (x, y))

weight(- (x))

weight(x (jc, y))

weight(/(.r, y))

weight(/(x))

weight(#(c<?rts/a«f))

yveight(g(variable))

w eigh t^*))

2

2

weight(jc) + weight(y) -I- 5

2* weight (j c) 4- 2

weight(jc)weight(y)

weight(jc) + weighty) 4-5

2*weight(x) 4- 2

3

3

weight(x) 4- 5

C. TEST CASES

Test runs were made for four cases: an abelian group, a commutative ring with

identity, a group homomorphism, and a distributive lattice with identity. Two groups

of test runs were made for each case: one using AC unification and another using

ACI unification. There were six test runs in each group, based on different

combinations of the levels of term symmetry removed from processing:

level 1 —symmetric reductions,

levels 1 and 2 —symmetric reductions and subterms,

www.manaraa.com

104

levels 1 and 3—symmetric reductions and unifiers,

levels 1 and 4—symmetric reductions and critical pairs,

levels 1, 2, and 3, and

levels 1, 2, 3, and 4.

The removal of symmetric critical pairs was included in every test since, as discussed

in chapter 6 , it is an integral part of the standard Peterson-Stickel E-completion

procedure.

Tables VI through IX contains the statistics for the test runs. The critical pairs

column of each table reflects the number of critical pairs generated during each test

run. Similarly, the reductions added column indicates the number of reductions added

to the set of reductions during execution of the E-completion procedure. However,

not all of those reductions are necessarily in the complete set, since reductions may be

simplified and removed from the set. Terminal form times is the time, in seconds,

taken to reduce all of the critical pairs to terminal form. This value docs not include

the time taken to remove term symmetries. The total run time is in seconds. Relative

time is the ratio of the total run time of a test to the total run time of the level 1 test

of the same test group. The level 1 test represents a "control" test, since it is merely

the standard Peterson-Stickel E-completion procedure.

1. Abelian Group.

An abelian group < A, + > is an algebraic system in which the binary operator

+ on A satisfy the conditions:

(1) (Vx, y, z e A) + (x, + (y, z)) = + (-I- (x, y), z),

(2) (Vx, y e A) + (x, y) = + (y, x),

(3) (3e e A) (Vx e A) + (x, e) = 4 - (e, x) = x, and

(associativity)

(commutativity)

(identity)

(4) (Vx e A) (3 — (x) e A) + (— (x), x) = 4 - (x, — (x)) = e. (inverse)

www.manaraa.com

105

Our E-completion procedure was used to generate a complete set of reductions for

the abelian group described above, assuming an identity element, 0. Two sets of test

runs were made: one assuming + to be an AC operator, and another assuming it to

be an ACI operator. The statistics for both sets of runs are in table VI. The input

Equations, S, input reductions, R, and the complete set of reductions produced for

the AC and ACI cases are as follows:

Assuming + to be an AC operator:

Input:

S: + (*. ~ W) = ° inverse law

+ (x , 0) = j c identity law

R: empty

Output:

R,: + (j c , 0) -* ■ j c

R2: + (x, - 0), y) - * *

R3: T (j c , — C *)) —► 0

R«: - (0) - > 0

Rs: - (- (J C)) - > J C

- (+ (x > y)) -* + (- W . - 0))
Assuming + to be an ACI operator:

Input:

S: + {x, - (x)) = 0 inverse law

R: empty

Output:

R,: — (— (j c)) — or

- (+ (*, >))-► + (- M . - O'))

R„: + (jc, 0) -» jc

www.manaraa.com

106

Table VI. STATISTICS FOR ABELIAN GROUP.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal
Form Time

Total
Run Time

Relative
Time

AC 1 123 8 37.0 68.7 1 . 0 0
1 , 2 123 8 40.2 67.0 0.97
1,3 119 8 40.8 71.9 1.05
1,4 89 8 26.1 55.1 0.80
1,2,3 119 8 39.4 71.5 1.03
1 ,2 ,3,4 8 8 8 2 2 . 2 59.1 0 . 8 6

ACI 1 37 1 0 40.7 62.9 1 . 0 0
1 , 2 36 1 0 44.9 61.8 0.98
1,3 37 1 0 48.1 65.6 1.04
1,4 33 1 0 35.2 55.0 0.87
1,2,3 36 1 0 39.8 64.5 1.03
1 ,2 ,3,4 32 1 0 43.6 61.5 0.98

www.manaraa.com

107

2. Commutative Ring with Identity .

A commutative ring with identity < A, +, x > is an algebraic system in which

the binary operators + and x on A satisfy the conditions:

(1) < A, + > is an abelian group with an identity el and inverse operator —,

(2) (Vx, y , z e A) x (x, x (y, z)) = x (x (x, y), z), (associativity of x)

(3) (Vx, y e A) x (x, y) = x (y, x), (commutativity of x)

(4) (3e2 e A) (Vx e A) x (x, e2) = x (e2, x) = x, and (identity of x)

(5) (Vx, y, z e A) x (x, + (y, z)) = + (x (x, y), x (x, z)). (distributivity)

Our E-completion procedure was used to generate a complete set of reductions for

the commutative ring with identity described above, assuming the identity elements, 0

and 1, for operators, + and x , respectively. Two sets of test runs were made: one

assuming + and x to be AC operators, and another assuming them to be ACI

operators. The statistics for both runs are in table VII. The input Equations, S,

input reductions, R, and the complete set of reductions produced for the AC and ACI

cases are as follows:

Assuming + and x to be AC operators:

Input:

S: x (x, + (y, z)) = + (x (x, y), x (x, z)) distributive law

x (x, 0) = x identity law

R: - (+ (x, .y)) -> + (- (x), - 0))

- (~ (x)) -> x

- (0) - 0

+ (x, - (x)) - » 0

+ (x, y , ~ (y))~> x

+ (x, 0) -> x

Output:

R,: - (4- (x, y)) -+ + (- (x), - (y))

www.manaraa.com

108

R2: W) - J f

R,: - (0) - ► 0

R , : - 1- t o - W) - 0

R 5 : + (x , y . - i y)) — > X

R . : + (x , 0) — * jc

R,: x (a t , 1) - J C

R,: x (a t , + O ' , z)) -+ + (x (at, . y) , x (at, z))

R 35: x (a t , 0) - * 0

R « : X (- t o , y) -* - (X (a t , . y))

Assuming + and x to be ACI operators:

Input:

S: x (x, + (y, z)) = + (x (jc, y), x (jc, z)) distributive law

R: + (x, y , -(y))-> x

- (~ (*)) *
if (x # 0)a(v =£ 0) then - (+ (x, y)) -> + (- (at), - (y))

Output:

R^ - (- t o) - * *
R3: if ((x # 0)) a(0 # 0)) then - (+ (x, y)) -* + (- (at), - (y))

R^ if (y # 0)a(z # 0) then x (at, + (y, z)) -» + (x (at, y), x (at, z))

R,: if (jc # 1) then x (jc, 0) -> 0

Ri«: if (V ^ 1) then x (- (at), y) -► - (x (at, j ;))

Ri7: + (x, y , - (y)) -+ x

www.manaraa.com

109

Table VII. STATISTICS FOR COMMUTATIVE RING WITH IDENTITY.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal
Form Time

Total
Run Time

Relative
Time

AC 1 551 46 1370.3 1811.8 1 . 0 0

1 , 2 547 46 1364.7 1800.5 0.99
1,3 541 46 1355.3 1810.9 1 . 0 0

1,4 480 46 1097.7 1546.4 0.85
1,2,3 537 46 1333.2 1790.6 0.99
1 ,2 ,3,4 477 46 1097.5 1552.7 0 . 8 6

ACI 1 234 17 1697.4 2360.0 1 . 0 0

1 , 2 229 16 1497.2 2111.9 0.89
1,3 199 17 1446.0 2337.2 0.99
1,4 138 18 1471.7 2131.9 0.90
1,2,3 194 16 1275.0 2092.8 0.89
1 ,2 ,3,4 138 17 1130.6 1932.1 0.82

3. Group Homomorphism.

A group homomorphism, g , between two groups, < A, + > and < B, / > , is an

algebraic system that satisfies the following conditions:

(1) < A f + > is a group,

(2) < B, I > is a group, and

(3) (Vx, y e A) g(+ (x, y)) = /(g(x), g(y)). (homomorphism)

Our E-completion procedure was used to generate a complete set of reductions for

the group homomorphism described above, assuming identity elements 0 and e, and

inverse operators — and i for -I- and /, respectively. Two sets of test runs were made:

one assuming + and / to be AC operators, and another assuming them to be ACI

operators. The statistics for both runs are in table VIII. The input Equations, S,

www.manaraa.com

110

input reductions, R, and the complete set of reductions produced for the AC and ACI

cases are as follows:

Assuming + and / to be AC operators:

Input:

S: g(+ (*, y)) = l(g(x), s(y))

R: - (+ (*, y)) -> + (- W, - 0))

- (0) - 0

+ (*. - W) - > 0

+ (x > y> - i y)) - > x

+ (jf, 0) -*■ x

iU(x > y)) -* l(K*)> Hy))

<('(*)) x

i(e) -* e

/(jf, /(*)) -* e

l(x, y> &)) - * x

/(X, e) ->x

Output:

R,: - (+ (jr, jO) -» + (- (x), - O'))

-(-(•*))-►■*
R3: - (0) - 0

R,: + (x, - (x)) - 0

R5: + (x, y , - O')) x

R*: + (*. 0) - x

R : i(l(x, J')) -» /('(*), /'O'))

R,: -* x

R,: i(e) -+ e

homomorphism

www.manaraa.com

I l l

R10:/(jr, i(x))->e

Rn: /(*. y, /(v)) -* X

Rt2: l{x, e)-* x

R,v g{ + (x, y)) - l (g (x) , g (y))

R » : ^ (0) - + e

R»: £(- W) -* ‘(g(x))

Assuming + and / to be ACI operators:

Input:

S: g(+ (x , y)) = /feto , g{y)) homomorphism

R: + to y, - 0)) -* x

- (- to) -► *

i f (x # 0) a (v # 0) t h e n - (+ (j t , y)) - ♦ + (- t o , - 0))/to y> 'O')) “♦ x
'('to) x

if (x # e)A(v =£ e) then /(/to ^)) /('to , 'O'))

Output:

R ,: + (x , y , — O ')) —* x

R 2:

R 5: if (jc # 0) a(j/ # 0) then - (+ to y)) - > + (- to , -

R .: /(■*. J'. '0)) - » -r

R : KKx)) -* x

R .: if (jc ^ e)/<(y # e) then ' (/ t o y)) -+ / ('t o , 'O '))

R ,: if (jc # 0)a (v # 0) then g(+ t o >0) -+ /teto), giy))

Rio-

t0'S

Ri»: g(- to) -> 't o t o)

www.manaraa.com

112

Table VIII. STATISTICS FOR GROUP HOMOMORPHISM.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal
Form Time

Total
Run Time

Relative
Time

AC 1 8 8 25 1 1 0 . 0 183.4 1 . 0 0

1 , 2 8 8 25 110.3 184.6 1 . 0 1

1,3 87 25 104.4 187.4 1 . 0 2

1,4 70 23 82.2 144.2 0.79
1,2,3 87 25 105.3 186.4 1 . 0 2
1 ,2 ,3,4 70 23 79.9 148.2 0.81

ACI 1 36 16 67.7 124.9 1 . 0 0

1 , 2 33 16 75.1 123.1 0.99
1,3 36 16 76.4 133.4 1.07
1,4 29 18 75.6 141.3 1.13
1,2,3 33 16 65.5 129.0 1.03
1 ,2 ,3,4 28 17 76.4 136.0 1.09

4. Distributive Lattice with Identity.

A distributive lattice with identity, < A, +, x > , is an algebraic system that

satisfies the following conditions:

(1) 4- is associative and commutative, and has an identity elt

(2) x is associative and commutative, and has an identity e2,

(3) (Vjc, y e A) 4 - (jr, x (jc, .y)) = jc, (absorption for 4-)

(4) (Vjc, y e A) x (jc, 4 - (jc, .y)) = jc, and (absorption for x)

(5) (Vjc, y, z e A) x (x , 4- (y, z)) = 4- (x (.x , y), x (jc, z)). (distributivity)

Our E-completion procedure was used to generate a complete set o f reductions for

the distributive lattice with identity described above, assuming identity elements 0 and

1 for 4- and x , respectively. Two sets of test runs were made: one assuming 4- and

x to be AC operators, and another assuming them to be ACI operators. The

www.manaraa.com

113

statistics for both runs are in table IX. The input Equations, S, input reductions, R,

and the complete set of reductions produced for the AC and ACI cases are as follows:

Assuming + and x to be AC operators:

Input:

S: + (x, x (x, y)) = x

x (x, + (x, j>)) =

x (•*» + 0 , z)) = + (x (x, y), x (x, z))

x (x, 1) = x

+ (x, 0) = x

R: empty

Output:

R,: x (x, 1) —► x

R2: + (x , 0) —► x

R3: + (x, x O, z), y) -► + (x, y)

R*: x (x, + (x, >0) *

R7: x (x, + (y, z)) -> + (x (x, y), x (x, z))

&i2- + (x, y , y) -> + (x , y)

R13: + (x, x) -► x

R14: + (x, 1) - 1

RIS: x (x, 0) -► 0

Ri«: x (x, y , y) -► x (x, y)

R,7: x (x, x) -> x

absorption

absorption

distributivity

identity

identity

www.manaraa.com

114

Assuming + and x to be ACI operators:

Input:

S: + (*, x (x, y)) = or

x (.x , -I- (x, y)) = x

x (•*, + 0 , z)) = + (x (x, y \ x (jt, z))

R: empty

Output:

R,: if (y # 0)v(z =£ 1) then + (x, x (y, z),

R,: x (jc, 1) —> x

absorption

absorption

distributivity

+ c*. y)

R3: if (jr ^ 1)a(v # 0)a(z # 0) then x (jr, + (y, z)) -> 4 - (x (jr, x (jr, z))

Rs: if (y # 1) then x (*, y , y) x (x, y)

Table IX. STATISTICS FOR DISTRIBUTIVE LATTICE WITH IDENTITY.

Case Level(s)

Run Statistics

Critical
Pairs

Reductions
Added

Terminal
Form Time

Total
Run Time

Relative
Time

AC 1 339 17 398.2 515.1 1 . 0 0

1 , 2 339 17 401.4 513.5 1 . 0 0

1,3 325 17 388.0 519.2 1 . 0 1

1,4 251 17 276.7 413.2 0.80
1,2,3 325 17 376.2 513.6 1 . 0 0
1 ,2 ,3,4 244 17 282.4 428.0 0.83

ACI 1 425 5 910.0 1054.8 1 . 0 0

1 , 2 425 5 905.9 1057.5 1 . 0 0

1,3 279 5 888.3 1087.5 1.03
1,4 165 5 690.3 8 8 6 . 6 0.84
1,2,3 279 5 894.0 1097.9 1.04
1 ,2 ,3,4 165 5 714.6 932.0 0 . 8 8

www.manaraa.com

115

D. OBSERVATIONS

1. AC Test Results.

The results of the AC test groups for the abelian group, commutative ring with

identity, group homomorphism, and distributive lattice with identity are similar. In

each case, removing symmetric subterms and/or symmetric unifiers (levels 1 and 2 ,

levels 1 and 3, and levels 1, 2, and 3) did not have a great impact on the number of

critical pairs produced; that is, there were not many symmetric subterms or unifiers

found. The total run times of these three tests are almost identical to that of the

standard E-completion procedure. Thus, the run time saved by removing these

symmetric redundancies was evidently consumed by the process of checking every

subterm and/or unifier for symmetry.

The removal of symmetric critical pairs (levels 1 and 4, and levels 1, 2, 3, and 4)

was, however, a different matter. The elimination of this type of term symmetry

resulted in a significant reduction in the number of critical pairs (13% to 28%) and a

corresponding reduction in the total run time (12% to 21%). The tests in which all

four types of term symmetry were eliminated resulted in the same or fewer critical

pairs retained than did the removal of just symmetric reductions and critical pairs, but

once again, the overhead of removing symmetric subterms and unifiers destroyed any

potential savings in total run time.

2. ACI test results.

The results of the ACI test groups for the abelian group, commutative ring with

identity, group homomorphism, and distributive lattice with identity are not as

consistent as those observed for the AC test groups. In general, however, we do see

that a large reduction in the number of critical pairs resulted in a drop in the total

www.manaraa.com

116

run time. Two notable exceptions are the tests of the removal of symmetric critical

pairs (levels 1 and 4) for the abelian group and group homomorphism. In fact, the

total run time actually took a large jump upwards in the case of the group

homomorphism. We believe that this is due to a relatively minor drop in the number

of critical pairs (that is, minor with respect to the number of critical pairs removed,

not the proportion of critical pairs removed), accompanied by an increase in the

number of reductions added during processing. This would result in an increase in

the amount of time taken to perform the inter-reduction simplification process.

The increase in reductions added comes about as a result of the pruning of the

list of critical pairs processed. When a critical pair near the front of the list is

symmetric to one near the end of the list, and the former would have produced a

reduction, that reduction will now be produced near the end of processing. This

means that the intermediate critical pairs that would have been conflated by the new

reduction may now not conflate, and will be added as critical pairs, only to be

removed when the latter critical pair is processed.

www.manaraa.com

117

V III. C O N C L U S IO N S

A. SUMMARY

In chapter 1 , it was stated that the goal of this research was to develop a

method of significantly reducing the processing needed to complete an incomplete set

of reductions. We have been modestly successful in reaching this goal.

We presented the concept of term symmetry, and developed the accompanying

theory to show that symmetric syntactic structures encountered in the E-completion

process, including symmetric E-unifiers, represent redundant information and can be

discarded without altering the results that are returned by the procedure. Using the

theory of term symmetry as a foundation, a term symmetry decision algorithm was

developed. Its correctness and termination were proven, and an analysis was made of

its worst-case time and space complexities.

This basic algorithm was extended to algorithms for deciding the symmetry of

subterms and deciding the symmetry of unifiers. All algorithms were implemented in

Common Lisp and used in conjunction with our implementation of the E-completion

procedure. E-completion tests were run for four examples using various

combinations of the symmetry removal algorithms, first utilizing our AC unification

algorithm, then our ACI unification algorithm.

The savings in processing time resulting from the removal of term symmetries

were not as significant as we had hoped for. We had expected a sizable percentage of

unifiers to be symmetric, but this was not so. In fact, the removal of symmetric

unifiers or symmetric subterms generally resulted in a slower run time than with the

symmetries left intact. The best method, in general, turned out to be the removal of

symmetric critical pairs after their formation. The development of a more efficient

term symmetry decision algorithm would improve the performance of each of the

www.manaraa.com

118

symmetry removal algorithms. Another possibility would be the removal of

symmetric critical pairs in conjunction with some other search space pruning

technique.

B. TOPICS FOR FUTURE RESEARCH

In performing this research and preparing this paper, several questions surfaced

that we believe to be interesting and relevant. Some of these are:

(1) Since there exists an algorithm to decide tree isomorphism in linear time

_AH1A] , we believe that our term symmetry decision algorithm, which has

a time complexity of O ^log w), can be greatly improved upon. The

problem of deciding term symmetry is merely an instance of the tree

isomorphism problem. Since the term symmetry decision algorithm is used

as the basis for the symmetry removal algorithms, this would also improve

their efficiencies.

(2) It would be interesting to combine, in one E-completion procedure, our term

symmetry pruning techniques and the unblocked unifier method described

by Kapur, Musser, and Narendran [^ A /8 6]. We have implemented their

method separately and obtained favorable results in the reduction of run

times. Since their technique operates on unifiers, and ours performs best on

critical pairs, a combination of the two could lead to better results than

either, individually.

(3) Another area to which the idea of pruning term symmetries might be

beneficial is that of resolution-based proof systems. Permitting such

systems to use clauses involving non-empty equational theories increases

their power. If symmetric clauses, literals, and E-unificrs represent

redundant information in these systems, then removing the symmetries

should decrease the size and complexity of the search space involved.

www.manaraa.com

119

(4) The development of an asymmetric, complete AC/ACI unification algorithm

is desirable. The method that we use to remove unifier symmetries is to

generate a complete set of unifiers, and then discard those that are

symmetric. This is an extremely wasteful process. It would be much better

to generate the asymmetric, complete set of AC/ACI-unifiers directly.

However, we believe this to be a difficult goal, since it is similar to the

generation of minimal, complete sets of AC/ACI-unifiers. We have not

seen an algorithm that can directly produce a minimal, complete set of

AC/ACI-unifiers for general AC/ACI terms. But, if an asymmetric,

complete AC/ACI-unification algorithm can be developed, it may be

possible to extend the asymmetric, complete set of unifiers to a minimal,

complete set of unifiers.

www.manaraa.com

1 2 0

REFERENCES

[/1//74] Aho, A., Hopcroft, J., and Ullman, J. (1974). The Design and Analysis of
Computer Algorithms, Addison-Wesley Publishing Company, Reading,
MA.

Ci?a88] Baird, T. (1988). "Complete sets of reductions modulo a class of equational
theories which generate infinite congruence classes." Ph D. dissertation,
University of Missouri-Rolla, Rolla, MO.

[CL88] Christian, J., and Lincoln, P. (1988) "Adventures in associative-commutative
unification." Technical Report ACA-ST-275-87, Microelectronics and
Computer Technology Corp., Austin, TX.

[Ctf85] Carlsson, M. (1985). "A Microcoded unifier for Lisp machine Prolog."
Proceedings of the 5th IEEE Symposium on Logic Programming, Boston,
MA., IEEE Computer Society Press, pp. 162-717.

[DAT84] Dwork, C., Kanellakis, P., and Mitchell, J. (1984). "On the sequential
nature of unification." Journal of Logic Programming, volume 1, pp.
35-50.

CF<z84] Fages, F. (1984). "Associative-commutative unification." Proceedings of the
Seventh International Conference on Automated Deduction, R. Shostak,
ed., Lecture Notes in Computer Science, volume 170, Springer-Verlag,
Berlin, West Germany, pp. 194-208.

CFG84] Forgaard, R., and Guttag, J. V. (1984). "A term rewriting system generator
with failure-resistant Knuth-Bendix." Technical Report, MIT Laboratory
for Computer Science, Massachussets Institute of Technology,
Cambridge, MA.

_He30] Herbrand, J. (1930). "Researches in the theory of demonstration." From
Frege to Godel: A Source Book in Mathematical Logic, 1879-1931, van
Heijenoort, J., ed., Harvard University Press, 1967, pp. 525-581.

H//O80] Huet, G., and Oppen, D. (1980) "Equations and rewrite rules: a survey."
Perspectives and Open Problems, R. Book, ed., Academic Press, Orlando,
FL.

[/ / k78] Huet, G. (1978). "An algorithm to generate the basis of solutions to
homogeneous linear diophantine equations." Information Processing
Letters, volume 7, pp. 144-147.

[JA^86] Jouannaud, J.-P., and Kirchner, H. (1986). "Completion of a set of rules
modulo a set of equations." SIAM Journal of Computing, volume 15, pp.
1155-1194.

[^ ^ 8 6] Kapur, D., Musser, D., and Narendran, P. (1986). "Only prime
superpositions need be considered in the Knuth-Bendix completion
procedure." Technical Report, General Electric Research and
Development Center, Schenectady, NY.

www.manaraa.com

121

[A7V86.1] Kapur, D., and Narendran, P. (1986). "Matching, unification, and
complexity." Technical Report, General Electric Research and
Development Center, Schenectady, NY.

[]AjV86.2] Kapur, D., and Narendran, P. (1986). "NP-Complcteness of the
associative-commutative unification and related problems." Unpublished
Manuscript, General Electric Research and Development Center,
Schenectady, NY.

_KB10] Knuth, D., and Bendix, P. (1970). "Simple word problems in universal
algebras." Computational Problems in Abstract Algebras, J. Leech, ed.,
Pergamon Press, Oxford, England, pp. 263-297.

[L<z75] Lankford, D. (1975). "Canonical inference." Technical Report ATP-32,
University of Texas, Austin, TX.

[La87] Lankford, D. (1987). "Non-negative basis algorithms for linear equations
with integer coefficients." Technical Report, Louisiana Tech University,
Ruston, LA.

[LS76] Livesey, M., and Siekmann, J. (1976). "Unification of A + C-terms (bags)
and A 4- C+ I-terms (sets)." Technical Report, Universitat Karlsruhe,
Karlsruhe, West Germany.

_Mall~\ Makanin, G. (1977). "The problem of solvability of equations in a free
semigroup." TOM 233, no. 2, Soviet Akad., Nauk, USSR.

[A/A/82] Martelli, A., and Montanari, U. (1982). "An efficient unification
algorithm." Association for Computing Machinery Transactions on
Programming Languages, volume 4, pp. 258-282.

_PW1%~\ Paterson, M., and Wegman, M. (1978). "Linear Unification." Journal o f
Computer and System Sciences, volume 16, pp. 158-167.

[PS81] Peterson, G., and Stickel, M. (1981) "Complete sets of reductions for some
equational theories." Journal o f the Association fo r Computing Machinery,
volume 28, pp. 233-264.

[P/72] Plotkin, G. (1982). "Building-in equational theories." Machine Intelligence,
volume 7, Edinburgh University Press, pp. 73-90.

[/to65] Robinson, J.A. (1965). "A machine-oriented logic based on the resolution
principle." Journal o f the Association fo r Computing Machinery, volume
12, pp. 23-41.

[Se79] Sethi, R. as cited by Garey, M., and Johnson, D. (1979) in Computers and
Intractibility: A Guide to the Theory o f NP-Completeness, W. H. Freeman
and Co., San Francisco, CA.

CS/79] Siekmann, J. (1979). "Matching under commutativity." Symbolic and
Algebraic Computation, Springer-Verlag, Berlin, West Germany, pp.
531-545.

www.manaraa.com

1 2 2

C5586] Schmidt-Schauss, M. (1986). "Unification under associativity and
idempotence is of type nullary." Journal o f Automated Reasoning, volume
2, pp. 277-281.

[S /75] Stickel, M. (1975). "A complete unification algorithm for
associative-commutative functions." Proceedings o f the 4th International
Joint Conference on Artificial Intelligence, Tbilisi, pp. 71-82.

[Te85] Yelick, K. (1985). "Combining unification algorithms for confined regular
equational theories." Conference on Rewriting Techniques and
Applications, J. Jouannaud, ed., Lecture Notes in Computer Science,
volume 202, Springer-Verlag, Berlin, West Germany, pp. 365-380.

[TZ?86] Yun, D., Biswas, P., and Xu, Y. (1986). "An efficient unification processor."
Technical Report 86-CSE-9, Southern Methodist University, Dallas, TX.

[Z/z87] Zhang, H. (1987). "An efficient algorithm for simple diophantine
equations." Technical Report, Rensselaer Polytechnic Institute, Troy,
NY.

www.manaraa.com

123

VITA

Blayne Eugene Mayfield was bom on September 4, 1957 at Cabool, Missouri.

He graduated from Mountain Grove High School in Mountain Grove, Missouri in

May, 1976.

He received his undergraduate education at the University of Missouri-Rolla in

Rolla, Missouri. In August, 1979 he received the Bachelor of Science degree in

Computer Science.

From May, 1979 until January, 1981 he worked as a business systems

programmer for the Monsanto Company in Saint Louis, Missouri.

From January, 1981 until August, 1984 he worked as a systems

analyst/programmer for Southwestern Bell Telephone Company in Saint Louis,

Missouri. During this period he was a graduate student at the Graduate Engineering

Center of the University of Missouri-Rolla, located in Saint Louis, Missouri. In

December, 1982 he received the Master of Science degree in Computer Science.

In August, 1984 he returned to the University of Missouri-Rolla in Rolla,

Missouri to pursue the Ph.D. degree in Computer Science.

He has been married to Annetta Barnett Mayfield since June, 1979. They have

two sons: Marcus and Brandon.

	The role of term symmetry in E-unification and E-completion
	Recommended Citation

	tmp.1591289432.pdf.7i0rZ

